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Extrapolation in a Big Data Environment:  
Detect Home Locations in a Continuous Stream of Location Data 

 
Dr. Hendrik Wagenseil, GfK Geomarketing, Nuremberg, Germany 
Markus Ziegler, GfK Marketing & Data Sciences, Nuremberg, Germany 
 
Framework and Objective 

In recent years, a lot of effort has been put into making use of mobile phone data in the field of Market-

ing in order to solve business questions. Therefore, GfK, one of the biggest market research companies in 

the world, has created Location Insights as an independent field of research and, hence, partnered with 

major carriers in several countries in order to capitalize the spati-temporal content that is inherent in 

mobile network data. 

In this context, GfK receives anonymized tri-laterated location data derived from mobile phone data on 

individual level, and is fully responsible for the entire data management, data processing and reporting. 

One of the key methodological questions is how to extrapolate from this data to the full population of a 

country in order to serve specific business needs, e.g. estimating how many visitors were at a given loca-

tion. Such information is widely regarded as extremely valuable to a variety of clients, e.g. retailers, OOH 

media agencies, transportation agencies or urban planning. One of the key requirements for any ex-

trapolation approach is a proper estimation of the place of residence of the devices.  

Commercial projects using mobile phone data delivered by a carrier usually face specific challenges. First 

and foremost, the continuous stream of location data poses a major challenge for data transfer, storage 

and processing. It is important to install approaches which allow for the processing of millions of device 

data in a manageable amount of time. Additionally, it is in the best interest of both, operator and com-

mercial partner, to make sure that all privacy legislation is strictly adhered to even if this leads to shorter 

device lifetimes or a smaller sample to work with. Losing the trust of any device owner or the public can 

result in major turmoil for future business relationships. Moreover, the value of the results is heavily de-

pendent on the accuracy of the data. Therefore, working with the data always means taking into the ac-

count the fact that location data is affected by measurement error. Finally,  a proper extrapolation ap-

proach is closely linked to overcoming biases in the data. This contains aspects like differing market 

shares of an operator across country and customer segments or the influence of network technologies 

on the amount of locations created. All these aspects set the framework for the analytical processes of 

analyzing the data.  Hence, dealing with location data in such a setting requires algorithms which are ef-

ficient, easy to implement in a big data environment, and easy to adjust to the boundaries set by the da-

ta. The estimation of the home location is the first step of the journey to extrapolating results of device 

movements. It allows for the linkage of population information and device counts and, as a result, paves 

the way for the implementation of an extrapolation factor per device.  

Methodology  

In order to estimate the home location for all devices, GfK has developed a two-step Bayesian estimation 

process which allows accounting for uncertainty in the data while linking them to information about the 

universe. In accordance with Isaacman (2011) the estimation of the home location is based on sightings 
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occurring between 7pm and 7am only.  

The first step aims at accounting for measurement error in the data. This is achieved by distributing all 

relevant locations of a single device to a 100 x 100 meter grid depending on the uncertainty level of eve-

ry record. As a result, relevant areas on the map can be identified which could serve as potential home 

areas. 

In the second step, coherent clusters are determined with the most likely being chosen for further calcu-

lations. Linking the grid information with census information, each grid cell can be assigned a population 

density value which in turn is used as the prior information in the Bayesian approach. The posterior is the 

probability of a given cell being the actual home location. Aggregating these cell probabilities allows link-

ing back to the census units and determining the respective home probabilities.  

 

Conclusion 

The proposed two step approach allows to link location data of a mobile device with any kind of census 

information while accounting for uncertainty in the location measures. Our talk will outline the main 

challenges of doing research with location data derived from mobile network from a commercial point of 

view, describe the core ingredients of our algorithm and present some validation results based on a large 

sample of devices demonstrating the feasibility of the approach over time. 

 

References 

Isaacman, Sibren; Becker,  Richard; C´aceres, Ram´on; Kobourov, Stephen; Martonosi, Margaret; Row-

land, James; Varshavsky, Alexander (2011):  Identifying important places in people’s lives from cellular 

network data. Pervasive Computing, p. 133–151 

Sightings from 7pm to 7am: Allocation of a probability to each affected tract 

p
 1

=0.3

p
2
=0.1

p
 3

=0.6

Figure 1: Estimation of probabilities for the home location of one device 
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Dr. Vlad Ardelean, Dr. Nina Meinel, GfK Marketing & Data Sciences 
 

“Classic meets Machine Learning” 

Our world is increasingly online: mobile devices such as tablets or smartphones have become the 

natural way to be online 24/7, our entry point to a myriad of services, shops, entertainment and 

information available whenever we need them.  

Within different projects, cooperation with mobile carriers allows GfK Marketing and Data Science to 

analyze data of mobile devices. The challenges in measuring information in mobile context are 

manifold. Most of these challenges come from technical and / or legal limitations; others are simply 

due to the sheer size. In some projects mobile data focuses on internet traffic information left in a 

carrier´s cellular network. The large scale of the data enables to derive app and browsing behavior 

as well as the long tail and spatial information. The opportunities this presents brands, advertisers 

and marketers is huge, and to truly maximise them, it’s essential to understand how mobile devices 

are used, and especially who is using them and when. In particular we are interested in 

characterizing those populations by socio-demographic profiles, by consumer-related attitudes and 

behaviors, which is within carriers CRM information partly or not available. Being able to enrich 

those data would add enormous value to the data. 

There are different data source and methods, which might be used to enrich those mobile data and 

predict individual characteristics. More specifically, an individual enrichment by using a survey or 

panel data could be implemented. Hence, we worked on approaches to enrich those mobile data 

with further information by using different integration methods. A short overview is given in following 

graphic. 

 

The paper examines these techniques and their prediction performance for specific set of variables. 

The comparison is done by an internal validation and therefore a GfK recruited opt-in panel of the 

size of about 3,000 respondents is used. The cooperating carrier provided a month of individual 

mobile data. 

The presentation will demonstrate the process of investigating different approaches by enriching a 

huge data set and summarizes findings, experiences and gives a recommendation on how to enrich 

mobile data. The presentation will focus on a limited set of variables showing findings and results on 

a few selected examples.  

Focus on aggregates  Simple techniques 

• Random Draws 

• Mean Imputation 

Focus on individuals 
Classical statistical 

techniques 
• Predictive Mean Matching  

• Lasso Regression 

Focus on individuals 
Machine learning 

techniques 
• Support Vector Machines  

• Random Forest  

• Decision Trees 
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Social Networks, Ethnicity, & Political Accountability
Extended Abstract for NetMob 2015

Nicholas Eubank˚

January 10, 2015

Network structure impacts political outcomes
by shaping the ability of citizens to interact, or-
ganize, and share information with one another.
This paper uses a novel source of data – six
months worth of detailed and geocoded telecom-
munications data from a cell phone provider in
Zambia – to test the relationship between so-
cial network properties and the capacity of cit-
izens to engage in social sanctioning, collective
action, and to share information about incum-
bent politicians. This is accomplished by first
relating each of these dynamics to different so-
cial network structures – transitivity, commu-
nity fragmentation, and rates of information dif-
fusion – and second, by separately measuring
the properties of the social networks of residents
of each of Zambia’s 150 National Assembly elec-
toral districts and more than 1,000 Local Coun-
cil electoral districts. In addition, data is used
to examine the relationship between co-ethnicity
and social network proximity, testing the hy-
pothesis that ethnic fragmentation is correlated
with poor development outcomes because ethni-
cally fragmented communities suffer from frag-
mented social networks.

While it is widely believed in Economics and
Political Science that networks affect political out-
comes, to date, we have very little empirical ev-
idence on what these inter-citizen networks look
like, and how these networks correlate with polit-
ical outcomes of interest. This paper advances this
literature using cell-phone meta-data from more
than 9 million Zambians to directly measure the
structure of social networks across the entire coun-
try and relate these structures to social, economic,
and political outcomes of interest.

˚PhD Candidate in Political Economy, Stanford Graduate
School of Business. nickeubank@stanford.edu. The author is
deeply indebted to Real Impact and in particular Chief Data
Scientist Gautier Krings for extensive support and assistance
with this project.

Systematic data on inter-citizen interactions has
historically been difficult to come by, especially in
developing countries. As a result, existing work has
been forced to proxy for inter-citizen networks, ei-
ther by measuring institutional affiliations [2, 17] or
by assuming individuals with similar demographic
characteristics (like ethnicity) also belong to com-
mon networks [6, 9, 13, 14]. Although reliance on
these proxies in the past is understandable, neither
proxy captures the complexity of social relations.
Institutional affiliations neglect the informal ways
in which people might be connected, and ethnicity
measures neglect heterogeneity in connectedness
within groups. Moreover, these proxies also fail
to distinguish between the many distinct properties
that fall under the general label of “connectedness”
– like the average network distance between indi-
viduals, or the degree to which people share com-
mon friends. While related, these types of proper-
ties are both empirically and theoretically distinct,
and may relate differently to different social phe-
nomena.

This paper begins to fill this gap using a novel
source of data – namely, six months of detailed
telecommunications data on 9 million subscribers
from a cell phone provider in Zambia.1 This data –
which is comprised of almost 2 billion telecommu-
nication transactions – is used to test three mech-
anisms by which networks might shape the abil-
ity of citizens to: (1) socially sanction free-riders,
(2) organize large groups for political action, and
(3) share information about politician activities. In
each case, this paper attempts to tie variation in es-
tablished social phenomena – like the effectiveness
of social sanctioning – to observable, measurable
properties of social networks – like the degree to
which individuals share mutual friends.

The first phenomenon examined is social sanc-

1The population of Zambia in 2010 was approximately
12.5 million, suggesting excellent data coverage.
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tioning. Social sanctioning is the application of so-
cial pressure to induce individuals to participate in
pro-social activities like political protests or com-
munity projects. Social sanctioning is core to many
models of citizen-interactions and and is a key
strategy for overcoming the collective action prob-
lem [15]. Yet the ability of citizens to social sanc-
tion is often simply assumed [13, 3, 4, 1]. This
paper presents a novel model of social sanctioning
which expands on the work of [10], [6] and [12]
to explain both the ability of individuals to sanc-
tion one another and also the potential strength of
social sanctioning based on a specific social net-
work property – the degree to which people share
mutual friends. This prediction that the degree to
which individuals share mutual friends (“transitiv-
ity”) should be positively associated with measures
of political accountability and its consequences is
then tested.

The second phenomenon examined is the how
network structure impedes or facilities coordinat-
ing citizens to engage in collective action. Organiz-
ing large groups for political action requires finding
a commonly-attractive message, managing logis-
tics, and sharing information among many people.
This is difficult in any setting, but this paper argues
that some network configurations – those in which
people are organized into relatively small, inter-
nally well-connected but disparate groups – may
make coordination especially challenging. This
theoretical formulation gives rise to the prediction
that measures of network fragmentation2 should be
associated with lower levels of coordinated mass
political activity, like protests.

Finally, this paper examines how network struc-
ture affects the diffusion of information within a
community. Numerous studies have examined the
impact of mass media on political accountability
[16, 7, 18], but this study aims to fill an important
gap in our understanding of informal information
sharing, which is likely to be of particular impor-
tance in the developing country context where for-
mal media may only be consumed by a limited sub-
set of the population or may not a reliable source
of objective information.3 It does so by simulat-

2This is operationalized as one minus the Herfandahl index
of inductively determined modularity-optimizing community
structures.

3Indeed, Zambia’s media has been rated as “Not Free: Not
possible to safely criticize government or government offi-
cials; government exerts indirect control over media” for most
of the last decade [19].

ing information diffusion in the actual networks of
Zambians in different electoral districts, and then
examines how simulated diffusion rates correlate
with levels of political knowledge among voters.

This investigation has the potential to not only
improve our understanding of the importance of
patterns of inter-citizen interaction, but also di-
rectly investigate a proposed explanation for the
negative correlation between ethno-linguistic frac-
tionalization (ELF) and development outcomes. In
recent years, studies of voting behavior [5, 11],
field studies of social sanctioning [13], and even lab
studies of ethnic preferences [9, 8] have all pointed
to the possibility that (1) co-ethnicity (belonging
to the same ethnicity) may actually be a proxy for
social network proximity, and (2) that the reason
ELF and poor development outcomes are corre-
lated may be that ethnically homogenous commu-
nities have integrated social networks in which cit-
izens are better able to monitor and (when neces-
sary) socially sanction one another. This explana-
tion would have the potential to rationalize a di-
verse set of findings, including the fact that voters
in African elections can be better characterized as
voting for co-ethnic individuals than co-ethnic par-
ties [11], and that in lab experiments subjects act
in a manner consistent with a fear of social sanc-
tioning, “discriminat[ing] in favor of co-ethnics if
and only if they can be seen to be doing so.” [8,
p. 721, emphasis in original]. To date, the link be-
tween ethnicity and network structure has not been
directly tested empirically. This paper begins to fill
this gap by pairing data on network structures with
highly disaggregated data on ethnic fractionaliza-
tion in Zambia to provide one of the first system-
atic tests of whether ELF is correlated with network
structure, as these theories require.

By combining novel geo-referenced social net-
work data with information on social, economic,
and political outcomes, this research will ground
well-established theories about inter-citizen dy-
namics in robust empirics. Moreover, this research
offers the promise of opening new avenues of re-
search on the effect of social network structure on
political outcomes.
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Discovering dependence of tweet inter-arrival times

Balázs Gerencsér∗ Christophe Cloquet∗ Vincent Blondel∗

January 12, 2015

1 Introduction

The temporal patterns of human communication behavior has been an active field of research. It has been
found that the event inter-arrival times follow a scale-free distribution [1], therefore the process of inter-arrival
sequences is often modeled as an i.i.d. process of the appropriate scale-free distribution [2].

The goal of this work is to draw attention to the dependence appearing in this process. We claim that
we get a much better fit and consequently a more precise understanding if we allow subsequent inter-arrival
times to be dependent.

In this pilot project we use Twitter data of Belgium and propose a very simple model of dependence,
already showing a considerably better fit to the data.

2 Model description

In this section we describe the model we use for the tweet inter-arrival times Wi of a single user. First of
all, we distinguish “short” and “long” waiting times depending on whether Wi exceeds some threshold TS .
This property will be recorded by Xi which can take values S or L.

The key point of the model is the dependence structure we propose. We assume that the distribution
of Wi, Xi depends on the type Xi−1 of the previous waiting time, but is conditionally independent from
anything before. Therefore the type Xi is determined using a transition probability matrix:

P =

(
pS|S pS|L
pL|S pL|L

)
,

where pS|L stands for the probability of observing a short waiting time after a long one. Similarly, the long
waiting times follow the scale free distribution f|S or f|L (parametrized by γS , γL) depending on whether
Xi−1 is S or L. For short waiting times we disregard the exact value.

We get a reference model of independent inter-arrival times if we assume Xi are i.i.d. and γS = γL. This
means the inter-arrival times Wi follow an i.i.d. process of scale-free variables.

3 Data source

The data we use is gathered using the Twitter Streaming API which gives public access and allows to fetch
tweets as long as the amount downloaded does not exceed the 1% of the total number of tweets during the
actual period.

We focused on geotagged tweets originating from Belgium, therefore the 1% limit was very far from being
reached. The tweets were gathered between December 2013 and April 2014. We also applied several filters to

∗B. Gerencsér, C. Cloquet and V. Blondel are with ICTEAM Institute, Université Catholique de Louvain, Belgium
balazs.gerencser@uclouvain.be, c.cloquet@gmail.com and vincent.blondel@uclouvain.be Their work is sup-
ported by the DYSCO Network (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian Federal Science Policy Office, and by the Concerted Research Action (ARC) of the
French Community of Belgium.
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remove spammers and other non-human users so that our study really focuses on human tweeting behavior.
We select users with at least 1000 tweets during this period so that it is meaningful to discuss inter-arrival
times.

4 Results

In order to justify the model we proposed, we statistically compare it with the independent model. We fix
the threshold to be TS = 60s.

We perform two tests for comparison. We analyzed which model performed the best, be it (a) for
individual users or (b) for all users.

For both tests we use the standard likelihood-ratio test. This means we perform a Maximum Likelihood
fitting of both models, we call the resulting likelihoods Lindep and Lnew. Assuming the null hypothesis that
the independent model is correct, we have that the difference

D = 2 log
Lnew

Lindep

follows a chi-squared distribution with degrees of freedom equal to the number of extra parameters in the
new model [3]. This is 2 for individual users and 2N for the overall comparison, where N = 1315, the number
of users. We reject the null hypothesis and claim that the new model fits better if D is unreasonably large
for the actual chi-square distribution.

For the individual users we accept the new model if D has a p-value at most 0.05. We find that out of
the 1315 users, we accept the new model for 997 of them, which is over 75%. For the overall comparison, we
get Dall ≈ 43239. Assuming the null hypothesis this should be drawn from a chi-squared distribution with
degree of freedom 2N = 2630, but this has an extremely small p-value (0 up to machine precision). In other
words, for an overall view of inter-arrival times it is absolutely clear that the new model should be preferred
to the simple, independent one.

5 Conclusions and outlook

In this work we have shown that introducing a simple dependence structure substantially improves the
quality of fit to Twitter inter-arrival data.

We understand this result as a first step of better understanding this type of temporal data. The model
should be tested for other, similar scenarios, primarily on mobile phone datasets. Moreover, there are several
ways to refine the dependence structure currently proposed and these should be explored to get a better
insight on the behavior of such processes.
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A Unified Model for Individual Spatial Temporal Mobility Patterns  

Yingxiang Yang, Marta González 

Statistical models that can characterize human mobility patterns are of importance in a broad range of 

research areas from epidemiology, transportation engineering, to urban planning and mobile network 

communication [1, 2, 3, 4, 5, 6, 7, 8]. Nowadays, even though detailed transportation simulation 

platforms can already mimic realistic travel behaviors [9, 10, 11], simple statistical models are still 

needed not only because the detailed information required for the calibration of simulation platforms are 

usually not available, but also because these statistical models are amenable to mathematical analysis that 

quantifies the influence of each parameter. 

Ubiquitous findings observed in data from human mobility can be expressed by five statistical 

distributions on the urban population, which are repeatedly found in previous works [12, 13, 14, 15, 16, 

17, 18, 19, 20, 21]. These are: the frequency of visits to each location over long term observations, the 

number of locations visited each day, the duration of the visits, the distance traveled per trip, and the 

temporal span between visits to the same location. An important research question is to not only include 

these patterns in a mobility model, but also explain the pervasive mechanisms that produce the observed 

distributions in diverse scenarios. In this study we model these spatial and temporal human mobility 

patterns and integrate them into a unified model using stay locations extracted from two million mobile 

phone users’ Call Detailed Records in the Boston metro area.  

Spatially, we model the heterogeneously distributed activity locations, i.e, the trip origins( ) and 

destinations ( ) for the entire population, using a bivariate multiplicative cascade model.  As is shown by 

Fig. 1(a), we repetitively divide the entire study area    into    ,    ,… grids. Both the spatial 

clustering of origins and destinations, and the degree of attraction or repulsion between them at each 

granularity level   are controlled by bivariate random variables     
    

 . The influences of     
    

  at 

different granularity levels combine multiplicatively. Such heterogeneously distributed activity locations, 

when combined with a rank based location selection model (Fig. 1(b)), could give rise to heavy-tailed trip 

length distributions, which is a ubiquitous characteristic found not only in human movement, but also 

various other systems.  

 

Temporally, stay duration is modeled by a time-inhomogeneous Markovian model that includes both the 

circadian pattern and burstness of travelling (Fig. 2(a, b)). The circadian pattern is captured by time 

dependent travel probability at each time step, while the burstness of travelling is captured by 

distinguishing the steady state, which means being at home, from the active state, which means being at 

other places. In the proposed temporal model, both the number of daily visited location distribution and 

the stay duration distribution could be analytically derived using Markov chain embedding technique. 

They both compare well with the observed distributions from cell phone data, as is shown in Fig. 2(c, d). 

The long term visitation pattern is incorporated by the exploration and preferential return mechanism, 

shown in Fig. 2(e). 

 

At last, we show that these components could be integrated into a combined model. In the combined 

model, each component is controlled by only a few parameters. With these easily tunable parameters, we 

are ready to evaluate the influence of individual movement patterns on a broad range of research areas 

including epidemics spreading, wireless network routing, and transportation planning. 
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Fig. 1 (a) The scheme of the hierarchical cascade process for generating trip origin density  . Each tile is 

repetitively divided into 4 smaller tiles. The location density in each tile is controlled by the cascade generator  . (b) 

The probability to choose the rank   location as the destination is  ( )       . The closest potential destination is 

rank 1. (c) The probability to travel outside tile level  . The tile size of level 1 is      , level 2 is      . (d) The 

trip distance distribution  (  ) observed from trips generated using stay locations extracted from cell phone data, 

and from the simulation of the proposed model. 

 

Fig. 2 (a) Illustration of different choices for a non-commuting person when the person is at “home” or “other” 

location. (b) The time dependent periodic transition probability  ̂( ). (c) Number of daily visited location 

distribution  ( ) measured from stays extracted from cell phone data, the model’s simulation result, and the 

model’s analytical result. (d) Activity duration distribution  (  ) measured from stays extracted from cell phone 

data and the model’s simulation result.  (e) Visiting frequency  ( ) to the     most visited location follows 

 ( )       for users visiting different number of locations in the observation period. 
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Estimating the Wealth of an Individual
Based on Individual Patterns of Phone Use

Joshua E. Blumenstock
University of Washington

Seattle, WA
joshblum@uw.edu

ABSTRACT
We provide evidence that mobile phone records can be used
to predict the socioeconomic status and other welfare indi-
cators of individual mobile phone subscribers. Combining
several terabytes of anonymized transactional mobile phone
records with data collected through 2,200 phone-based in-
terviews, we test the extent to which it is possible to predict
an individual’s responses to survey questions based on phone
records alone. We observe significant correlations between
asset ownership and a rich set of measures derived from the
phone data that capture phone use, social network structure,
and mobility.

Simple classification methods are able to predict, with
varying degrees of accuracy, whether the respondent owns
assets such as radios and televisions, as well as fixed house-
hold characteristics such as access to plumbing and elec-
tricity. More modest results are obtained when attempting
to predict a broader set of development indicators such as
an individual’s response to the question, “Have you had to
pay unexpected medical bills in the past 12 months?” While
these methods offer a powerful opportunity for policymak-
ers and researchers working in developing countries, we ar-
gue that considerable calibration and refinement is needed
before such methods can be deployed.

Keywords
Mobile phones, development, big data, call detail records,
wealth, mobility, social networks, regression

1. INTRODUCTION AND MOTIVATION
Reliable, quantitative data is a critical input to develop-

ment policy, social science research, and to the decision-
making process of firms and organizations interested in pro-
moting social good. However, the basic measurement of key
development outcomes – such as poverty, physical security,
and happiness – is notoriously difficult in developing coun-
tries, where a lack of physical infrastructure and resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

is often compounded by market failures and fragile institu-
tional capacity [10].

Such problems are exacerbated in fragile and conflict-
affected regions, where concerns over corruption and the
physical security of enumerators and respondents make the
regular collection of representative household survey data
all but impossible. For example, Angola’s last census was
in 1970, and covered just 18 districts [11]. As a result, re-
searchers and policymakers typically rely on data from large-
scale national surveys (which occur infrequently), or special-
ized panel survey modules (which are typically administered
to small, local populations). Neither traditional source cap-
tures fine-grained variation in development outcomes over
both space and time.

In this paper, we describe preliminary results from ef-
forts to develop models for predicting an individual’s so-
cioeconomic status and related development outcomes based
upon anonymous, high-frequency data passively registered
through use of mobile phone networks. A key innovation
of this approach is our ability to link individual survey re-
sponses collected in phone interviews with incredibly rich so-
cial network and communication data obtained from mobile
phone operators. Such an approach can be used to model the
relationship between passively collected metrics of mobile
phone use and explicitly queried socioeconomic phenomena.
For instance, it will be possible to tell whether an individ-
ual’s communication history can be used to predict whether
that individual agrees with a survey-based statement such
as, “I believe the current economic situation will improve in
the coming year,” or “I feel connected to other members of
my local community.”

Here, we focus on results from the analysis of data col-
lected in Rwanda in 2009 and 2010. This work extends a pre-
vious workshop paper that used a simple regression model
to illustrate the strong relationships between simple metrics
of phone use and a composite indicator of socio-economic
status [1]. To our knowledge, no other prior work has inves-
tigated the relationship between individual communication
histories and individual development outcomes. However,
a series of recent studies have shown that geographically-
aggregated communication records are strong predictors of
regional census data [5, 8, 9]. A closely related set of work
uses individual phone records to model gender and related
(fixed) demographic characteristics [4, 7]. These approaches
are strongly complementary, and we expect that over the
next several years these methods will significantly advance
our ability to measure, model, understand, and improve the
lives of historically marginalized populations.
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Sample Yit Indicator (“development outcome”) Sample Xit Indicator (“feature”)

Household owns a motor vehicle Average number of outgoing phone calls per day
Amount of land owned by individual Number of unique contacts in social network
Recent illness or other negative economic shock Number of geographic regions visited in past month
Total expenditures in last month Total expenditures on mobile phone-based communication
Value of recent agricultural harvest Eigenvector centrality of respondent
Financial outlook on 7-point Likert scale Percentage of closed triangles in social network

Table 1: Sample Yit development status indicators to be modeled as a function of sample Xit features

Accuracy Recall Precision F AUC % Answered Yes
Panel A: Assets and Housing

Owns a radio 0.976 1.000 0.976 0.988 0.899 0.973
Owns a bicycle 0.676 0.552 0.678 0.609 0.722 0.456
Household has electricity 0.819 0.533 0.761 0.627 0.828 0.285
Owns a television 0.855 0.497 0.738 0.594 0.814 0.214
Has indoor plumbing 0.887 0.250 0.842 0.386 0.843 0.142
Owns a motorcycle/scooter 0.899 0.011 1.000 0.022 0.772 0.102
Owns a car/truck 0.945 0.213 0.867 0.342 0.849 0.068
Owns a refrigerator 0.954 0.180 1.000 0.305 0.878 0.055
Has landline telephone 0.992 0.125 1.000 0.222 0.562 0.009

Panel B: Social Welfare Indicators

Hospital bills in last 12 months 0.633 0.890 0.633 0.740 0.653 0.587
Very ill in last 12 months 0.686 0.188 0.550 0.280 0.671 0.325
Death in family in last 12 months 0.665 0.183 0.632 0.284 0.619 0.363
Flood or drought in last 12 months 0.788 0.086 0.607 0.151 0.706 0.219
Fired in last 12 months 0.901 0.022 1.000 0.043 0.731 0.101

Table 2: Model performance at predicting responses from survey respondents based on call records data

2. PRELIMINARY RESULTS
In ongoing work, we are conducting additional phone sur-

veys to collect a broader range of development outcomes
such as those listed in column 1 of Table 1. Here, we focus
on the simplified task of predicting responses to relatively
well-defined questions with concrete answers that were col-
lected in short phone interviews with mobile phone users
in 2009 and 2010. Section 2.1 describes results from pre-
dicting asset ownership and housing characteristics; section
2.2 describes initial results at predicting more general mea-
sures of social welfare; and section 2.3 describes results from
predicting a composite index of respondent wealth.

2.1 Predicting asset ownership and
housing characteristics

In Panel A of Table 2, we present the results from the use
of a logistic regression to predict binary responses to sur-
vey questions about fixed assets and housing characteristics
such as, ”Does your household own one or more radios?” or
”Does your household have electricity?” We fit a version of
model (??) with regional fixed effects and roughly twenty
aggregated measures of phone activity such as those in col-
umn 2 of Table 1, including measures of phone use, SMS
use, geographic mobility, and social network structure. The
model is fit using 10-fold cross-validation on a sample of
roughly 900 respondents who answered all survey questions,
where the binary classification threshold is determined to
maximize accuracy and the other performance metrics are
reported at that threshold. Figure 1 shows the ROC curves

for three representative questions asked in the survey.
In general, this rudimentary approach to modeling the

relationship between phone use and asset ownership shows
signs of modest success. For most of the outcome variables
we seek to model, we can achieve relatively high accuracy,
but these rates are only marginally higher than the naive
baseline of predicting the majority class. For instance, the
model accuracy of 85% in predicting television ownership
is only an 8 percent (6 percentage points) increase over a
model that predicts all respondents do not own televisions.

2.2 Predicting welfare indicators
Panel B of Table 2 presents similar results from our at-

tempts to predict more subjective responses to broader de-
velopment questions such as “Has your household had to pay
significant hospital bills in the past 12 months?” and “Have
you lost your job in the last 12 months”. Here, performance
is lower than with the asset ownership questions; we find
that our models are only able to offer marginal improve-
ments over naive baseline predictions.

2.3 Predicting composite socioeconomic status
Finally, we test the ability of this approach to predict

composite index of socioeconomic status. To create this ag-
gregate metric from the survey responses, which we denote

by Ŷid, we take the first principal component of the 9 as-
set and housing characteristics listed in Panel A of Table 2.
The first principal component of wealth explains 27.24% of
the variance of the 9 asset categories. Similar results ob-
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Figure 1: ROC curve for three survey outcomes

tain when creating a composite based on the first principal
component of a much larger number of assets and housing
characteristcs.1

In Table 3, we present the results from fitting an ordi-
nary least squares regression of this first principal wealth
component on a representative sample of mobile phone use
metrics. While the explanatory power of this regression is
rather limited (R2 = 0.29), there are strong relationships
between the wealth composite and several of the measures
of phone use and network structure. Note that the sign and
magnitude of each of the regression coefficients is highly de-
pendent on the set of regressors included; because of the nat-
ural dependencies in the phone data, inclusion or exclusion
of additional features substantively changes the estimated
coefficients (though such tinkering has relatively little effect
on the fit of the model).

To further illustrate the strong correlations between phone
use and wealth, we perform a second principal component
analysis on a large set of different metrics of mobile phone
activity. In this case, the first principal component of 97
metrics of phone use explains 34.63% of the variance of the
full dataset. In Figure 2, we plot for each of the survey
respondents the first principal component of wealth (y-axis)
against the first principal component derived from the phone
use data (x-axis). The strong positive relationship between
these two components is illustrated by the Nadaraya-Watson
kernel regression shown in red.

3. DISCUSSION AND CONCLUSION
We have presented preliminary evidence that it is possible

to predict a variety of indicators of individual socioeconomic
status and welfare using mobile phone call records. If these

1In earlier work, we have taken a different approach that de-
velops a composite index of “predicted expenditures” using
publicly available household survey (DHS) data to approx-
imate the estimated annualized household expenditures of
survey respondent [1]. See [6] for a related approach to de-
veloping a composite wealth index from survey data.

Table 3: Regression of first principal component of
assets on selected measures of phone use

Coefficient (S.E.)

Active days −0.04 (0.03)

Calls per day 2.49 (2.28)

Outgoing calls 0.01 (0.01)

Incoming calls −0.01† (0.01)

Degree 0.08∗∗ (0.03)

Int’l outgoing calls −0.59∗ (0.26)

Int’l incoming calls −1.09 (0.72)

Int’l degree 0.38∗ (0.17)

Towers visited −0.03 (0.21)

Avg. recharge denomination 0.01 (0.03)

Daily recharge −0.27∗∗∗ (0.06)

Clustering −505.80∗∗∗ (148.09)

Betweenness 137.06∗ (56.66)

N 897

R2 0.29

Results show regression of first principal component of

the wealth (Ŷid), scaled by 100 to simplify presentation.
Standard errors in parentheses. Regression includes dis-
trict fixed effects but coefficients are omitted from table
for clarity. † significant at p < .10; ∗p < .05; ∗∗p < .01;
∗∗∗p < .001

results can be further calibrated and improved upon, this
technique could provide policymakers and researchers with
a novel quantitative perspective on populations for whom
good data has historically been hard to find. Compared
to traditional methods for collecting individual and house-
hold data, the use of call records represents a considerably
cheaper alternative, with dramatically higher spatial and
temporal precision. In principle, such fine-grained devel-
opment indicators could be applied in a variety of settings,
from program monitoring and evaluation to social welfare
targeting and analysis.

While provocative, we do not want to overstate the ac-
curacy of the methods tested thus far, or imply that such
techniques will ever supplant alternative modes of data col-
lection. The predictions presented in this paper are rela-
tively inaccurate, and the methods, models, and data leave
considerable room for improvement. In ongoing work, we
are working to develop improved statistical and computa-
tional models, and are collecting a large amount of survey
data that will allow for better calibration and testing.
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Upon an overall human mobility behavior within the city 

of Rio de Janeiro, this paper describes a methodology to 

predict commuting trips based on the mobile phone data. 

This study is based on the mobile phone data provided by 

one of the largest mobile carriers in Brazil. Mobile 

phone data comprises a reasonable variety of 

information about subscribers’ usage, including time 

and location of call activities throughout urban areas. 

This information was used to build subscribers’ 

trajectories, describing then the most relevant 

characteristics of commuting over time. An Origin-

Destination (O-D) matrix was built to support the 

estimation for the number of commuting trips. 

Traditional approaches inherited from transportation 

systems, such as gravity and radiation models – 

commonly employed to predict the number of commuting 

trips between locations(regularly upon large geographic 

scales) – are compared to statistical and data mining 

techniques such as linear regression, decision tree and 

artificial neural network. A comparison of these models 

shows that data mining models may perform slightly 

better than the traditional approaches from 

transportation systems when historical information are 

available. In addition to that, data mining models may be 

more stable for great variances in terms of the number of 

commuting trips between locations and upon different 

geographic scales. Gravity and radiation models work 

very well based on large geographic scales and they hold 

a great advantage, they are much easier to be 

implemented. On the other hand, data mining models 

offer more flexibility in incorporating additional 

attributes about locations – such as number of job 

positions, available entertainments, schools and 

universities posts, among others –and historical 

information about the trips over time. 

Human mobility analysis reveals relevant knowledge 

about displacements and overall movement behavior, 

supporting disciplines such as urban and public 

transportation planning, traffic forecasting, 

communication networks optimization and insights in the 

spread of diseases [1]. Human mobility studies based on 

mobile phone data allow approximating human motion 

pattern within particular geographic areas such as great 

metropolitan areas, big cities, entire states and even 

countries, including travelling behavior and migration 

trends [2]. 

This study was conducted by using mobile phone data 

from one of the largest telecommunications companies in 

Brazil. The overall analyses were performed based on six 

months of call detail records, revealing the average 

behavioral pattern of users travelling throughout the city 

of Rio de Janeiro over time. In this study, we analyzed 

approximately 3.1 billion mobile phone records, 

comprising 2.7 million subscribers, handled by 5,300 

antennas, performing 1,700 cell towers. 

 

Mobile phone data contains transactional records about 

caller and callee information, associating each call or text 

message to the corresponding cell tower that is spread out 

through the metropolitan areas. These cell towers process 

the incoming and outgoing calls, as well as text and 

multimedia messages sent and received by subscribers, 

providing relevant information about their geographic 

locations at particular points in time. This geographical 

information basically consists of the latitude and 

longitude, the radius covered by the cell towers and 

information about the physical addresses such as street, 

neighborhood, city and state. Even though such locational 

information only approximates real human mobility, 

recent studies [5] [19] show that by using the appropriate 

techniques, mobile phone data may offer the possibility to 

statistically characterize human trajectories and journeys 

on an urban area scale.  

The use of CDR data as a proxy for human mobility 

studies must be done with care. Besides of the spatial 

approximation where the position of the subscriber is 

assumed to be the position of the tower, subscribers do not 

make a call every time they move such that the observed 

trajectory if often not the real trajectory performed by the 

user. Moreover, the number of call varies strongly among 

the population such that the sample is highly biased 

towards people of better socioeconomic levels that trend 

to perform more calls. It should also be noticed that in 

Brazil, particularly in the Rio de Janeiro Area, where this 

study had been carried out, 85% of the subscribers are pre-

paid, such that they have very irregular calling pattern 
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depending on specific commercial offer they get. 

 

Mobile carriers have quite often an unbalanced 

distribution of prepaid and postpaid mobile phones in their 

customer database. Particularly in the Brazilian’s 

marketplace, this distribution is very unbalanced, 80% for 

prepaid and 20% for postpaid. Due to the majority of 

prepaid mobile phones in the customer database, we lack 

information about the subscribers’ home address. While 

prepaid subscribers do not need to provide an address, 

postpaid subscribers do, but they are able to declare any 

type of address, like their workplace or their home 

address, a different user’s address or the payer’s address. 

As the information about home address – and workplace – 

has an indispensable value in building the complete 

sequence of displacements in terms of human mobility 

behavior, we computed in this study the presumed 

domiciles and workplaces for all subscribers, irrespective 

whether they are prepaid or postpaid.  

Both presumed domiciles and workplaces are useful in 

many human mobility analyses, and could be used to 

estimate the number of people present in certain urban 

areas of interest. Information about domiciles and 

workplaces can also be used to create an Origin-

Destination (OD) matrix. The OD matrix is a matrix 

representation of the network connecting origin with 

destination locations, where the rows represent the origins, 

and the columns refer to the destinations. Each cell 

specifies information about the mobility, e.g. the number 

of displacements between origin and destination. Using an 

OD matrix uniquely composed of presumed domiciles and 

workplaces, we can apply a set of analyses to reveal 

interesting patterns of human’s motion in large 

metropolitan areas. For example, governmental and 

industrial decisions about traffic routing and public 

transportation planning may rely on analysis of home-

work and work-home displacements over time. Frequent 

connections between two areas in the city may receive full 

attention for instance. Moreover, a shift in traffic can be 

anticipated by analyzing domiciles and workplaces and the 

possible routes between the respective locations. 

Historical analyses of the number of commuting trips 

between locations over time can also allow organizations 

to estimate and forecast evolving trends and eventual 

issues in public transportation, traffic routing and 

communications network. 

 

According to the presumed domiciles and workplaces 

identified by the aforementioned method, we are able to 

clearly describe where people live and work in the city of 

Rio de Janeiro. Note that domiciliary information was 

verified by the official city reports obtained through the 

governmental authorities, and it was therefore included in 

the overall analysis of human mobility behavior. Home-

work and work-home routes are very important in order to 

understand possible traffic issues in great metropolitan 

areas. Commuting planning is one of the biggest 

challenges for big cities, both to establish and arrange 

properly public transportation resources and to design 

optimal traffic routes. The analysis of human mobility 

behavior can definitely help this task and improve its 

effectiveness. 

 

Gravity and radiation models are good approaches to 

estimate the number of trips between two distinct 

locations. In this study, the trip is defined as the 

movement between the presumed domicile and the 

presumed workplace, based on a particular geographic 

scale – cell towers, neighborhood and clusters of cell 

towers, irrespective of the path performed. 

The gravity model tracks its origin from the gravitational 

law. Two bodies are attracted to one another with a force 

that is proportional to the product of their masses and 

inversely proportional to the square of their distance. 

Gravity models are mapped to human mobility by 

replacing bodies by locations and masses by importance. 

Importance can be measured in terms of population, but 

can also incorporate other attributes like the number of 

jobs, gross domestic product, public facilities, 

transportation resources, traffic routes, among others. 

The gravity model usually incorporates parameters to 

define constraints to paths and displacements followed by 

people, such as the cost to travel [10]. The cost to travel 

consists of several attributes like the distance, the 

resources to cover the path, the number of people 

travelling, etc. In particular, it assumes that the commuting 

activity between two distinct locations is proportional to 

the product of the population of these two locations and 

inverse proportional to the distance between these two 

locations.  

Individuals are attracted to other locations as a function of 

the distance between two different places and the cost of 

travel between them. The gravity model considers that 

individuals are more attracted to close locations than to 

long-distance locations. This last hypothesis is based on 

the natural limited resources to travel between locations 

and the higher cost involved in long distances. In 

problems related to transportation systems, the distance to 

travel is a crucial factor in users’ decision making process 

when they have to commute between locations. Trips 

between two locations with the same distance may have 

different costs, for instance based on possible routes, 

traffic jam, public transportation resources etc. The 

population of the locations involved in the trip is also 

important to predict trips within geographic areas. Large 

number of people associated to origin and destination 

locations may imply more trips. 

The radiation model, on the other hand, tracks its origin 

based on theories about diffusion dynamics, where 

particles are emitted at a given location and have a certain 

probability of being absorbed by surrounding locations. 

It uses the spatial distribution for the population as input, 

not needing any other additional parameters. It basically 

depends on the populations of the locations involved in the 

trips and their distances [10]. 

As the radiation model is parameter-free, the model can be 

much easier implemented in mobility behavior analyses 

and trip prediction models, especially when using mobile 

phone data. Although the radiation model may not seem 

sufficient to predict human mobility in low geographic 

scales, this model is successfully applied in reproducing 

mobile patterns at large spatial scale [16] [17] [18]. As a 
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result, this type of model can reasonably forecast mobility 

trends and the number of trips in great metropolitan areas, 

big cities and even countries, particularly when long-

distances travels are involved.  

 

Considering the same geographic scales, we developed 

linear regression models and applied them on our mobility 

data set in order to predict the number of commuting trips 

between two distinct locations. We choose to estimate two 

types of linear regression models: a Quantile Regression 

and a Robust Regression. We found that those two models 

performed slightly better than the models inherited from 

physics – i.e. the gravity and radiation model. For 

comparison purposes, the mobility’s attributes used to 

feed these statistical models were the same as used in the 

gravity and radiation models. These attributes include the 

distance between the two locations involved in the trip, the 

number of trips originated from the origin location 

(regardless the destination), the population of the origin 

location, the population of the destination location and the 

radius population (the population in the circle between 

origin and destination locations). 

 

Also considering the same geographic scales, a decision 

tree model is estimated in order to predict the number of 

commuting trips between locations. A decision tree is a 

supervised learning model for classification problems 

[26]. Each input variable may corresponds to a node in the 

tree – if it increases the classification rate. Otherwise an 

input variable may be discarded. Each possible value for 

the input variable corresponds to edges to split nodes. In 

the case of continuous values the algorithm estimates cut-

off values to properly create the edges. Each leaf node 

represents a value of the target variable given the values of 

the input variables, represented by the path from the root 

of the tree to the leaf. Afterwards, the algorithm prunes 

away some of the created paths in order to avoid 

overfitting. A tree learns by splitting the input data set into 

subsets by testing the attributes’ value. The model 

evaluates the data on the target variable by selecting the 

most promising independent variable to distinguish 

between the values of the target variable. This process is 

recursively repeated on each derived subset. This process 

is called recursive partitioning, and it ends when the 

subset at a node has all the same value of the target 

variable, or when splitting no longer adds value to the 

predictions. 

The other data mining model that is developed to predict 

the number of commuting trips between any two locations 

in the city of Rio de Janeiro is an artificial neural network 

(ANN). This technique is inspired by the central human 

nervous systems. In an ANN, neurons are connected 

together to form a network which simulates a biological 

neural network. This network consists of sets of adaptive 

weights associated to each neuron, represented by 

numerical parameters adjustable by a learning algorithm. 

These neurons should be able to approximate non-linear 

functions of their inputs. The weights are activated during 

training and prediction phases [27]. 

An ANN is a model formed by the interconnection of 

basic processing units, called artificial neurons. Every 

node in a layer is fully connected to every node in the 

layer above it. In addition to weights associated with a link 

between nodes, each output node adds a constant weight. 

The computation feeds forward from input nodes to output 

nodes without loops. Starting with linear solution of zero 

hidden units, a net can have a variable number of hidden 

units, and these determine the complexity of the classifier. 

 

This section describes the models’ performance for the 

transportation systems approach, based on the gravity and 

the radiation models, and the data mining approach, based 

on the linear regressions, the decision tree and the 

artificial neural network models. The models’ 

performance is based on the RMSE – Root Mean Square 

Error – which is a good measure to describe the 

differences between observed and predicted values. This 

measure represents the standard deviation of the 

differences between these values, called residuals (based 

on the data sample used for the prediction).  

The comparison of all the models deployed in this study in 

terms of the root mean square error for the number of 

trips, considering the observed and predicted trips, based 

on the different geographic scales is presented in the 

following Figure. 
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Our contributions in this paper are new real time event 

detection method using location information from mobile 

phone handsets and wide-area evaluation using large 

telecom data set in Japan. Our method is combination of 

real time version of LPE algorithm and the automatic 

generation of training set for LPE. Evaluation result shows 

that our method is better than statistical approach.  

I.  INTRODUCTION 

Human mobility models are useful for many applications, 
such as city infrastructure planning, area marketing and disaster 
management.  Recently, many researches on human mobility 
model from location information of mobile phone users are 
reported [1][2]. However these researches only represent 
regular human activities, i.e. commuting between home and 
work place, but not for irregular activities such as attending 
concerts or sport games (here we call them “events” in this 
paper). If we use these models to estimate the population 
distribution when a popular concert is given at a stadium, we 
may underestimate it. In this paper, we propose a novel real-
time event detection method using the estimated number of 
mobile phone users in the target area to compensate the 
underestimation of population distribution by the existing 
human mobility models. 

II. BACKGROUND 

A. Event detection problem 

We consider “events” as sports games, concerts, 
conventions, conferences, festivals, troubles of public 
transportations or even bad weather days, which show different 
patterns of human mobility (especially positive increase cases) 
to the regular days. We do not consider the regularly crowded 
people in the Tokyo Disney Land (TDL) as the event. If an 
unusual number of people gather at TDL for the Final Count 
Down on New Year’s Eve, it is an event.  In the evaluation, we 
selected relatively larger events (i.e. event with more than 
10,000 people). But our approach is applicable to relatively 
smaller events, such as surprise concerts or small troubles of 
public transportation systems.  

Problem of finding an event from the number of users in a 
region is considered as a kind of outlier detection problems 
[3][4]. In the case where no training set is available, typical 
approaches are based on statistical model (e.g. average, 
standard deviation) and various kinds of models using 
proximity (e.g. distance based, density based and clustering). 
However, as the statistical characteristic differs for each mesh, 

simple statistical model does not work well. Due to the 
computational complexity, proximity based models are not 
suitable for real-time methods.  

 Neumann et al. proposed a proximity based method called 
LPE (Localized P-value Estimator) [5] using CDRs. LPE uses 
the number of CDRs for each hour of whole of day (i.e. 24 data 
per day) and calculates a distance value (e.g. Euclid distance) 
between the training data (days without events). Then LPE set 
the distance to the k-nearest neighbors (k-NNs) of each training 
day as the score of the day.  A day is an event day if the score 
of the day is larger than those of α percent of the training set. 
They showed that LPE has better performance to one-class 
SVM using CDRs in Barcelona city for event detection. 
However, methods which require training sets are not suitable 
for event detection method to wider region since it is not 
practical to provide training sets manually (Issue 1). Also as 
LPE uses whole of the day for the feature vector, it is not 
suitable for real-time detection of events (Issue 2).  

B. CDR data used for this research 

We used the CDR data from opt-in users of KDDI’s mobile 
phone service in this research. The approximate number of opt-
in users is about one percent of the population in Japan. We use 
the estimated location from base station ID and the delay 
information from the base station for the location of the user. 
Firstly we anonymize the CDRs by hashing the user-related 
information in them and generate the estimated locations of the 
anonymized users in chronological order. Next, we count the 
estimated locations of the anonymized users in every five 
minutes for 500m square meshes in Kanto region.  Kanto 
region is an eastern part of Japan including the Greater Tokyo 
area and contains approximately one third of the total 
population of Japan. The numbers of 500m meshes are 307,200. 

III. REAL-TIME EVENT DETECTION METHOD 

The computational cost of LPE classifier and the training 
cost of it are  O(n)  andO(n2) , where n  is the size of the 
training set, respectively.  If the size of the training set is not so 
large, LPE could be used for real time event detection. Our 
approach is that 1) generate the training set for LPE 
automatically, and 2) use LPE with shorter time window size 
(e.g. 4 hours) and limited size of training set (e.g. 30 days) for 
real time event detection, slide the time window along time 
axis and calculate the LPE classifier by differential 
computation from the previous time window, as shown in Fig. 
1. To realize our approach, two issues mentioned above are 
discussed as follows. 
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Fig. 1 Proposed method for real time event detection 

A. Issue 1: Automatic generation of training set 

Currently there are no general methods for classifying 
regular days (days without events) from days with events for 
various places (or meshes) automatically with high accuracy 
even if we use longer time window (e.g. whole day) for feature 
vector.  But if we allow some error to the training set, there are 
many classification methods. Fortunately LPE uses k-NN 
distance for the feature vector metric, LPE allows some errors 
in its training set. Here we cluster the days in the training 
period into 2 clusters by k-means and use the larger cluster as 
the training data set, assuming that ‘event’ is not usual. 
Practically we separate the training period into weekdays and 
weekends + holidays before constructing the training sets.  

B. Issue 2: Shortening window period 

With shorter window period, LPE tends to generate false 
reports. To improve the recall rate, we set additional thresholds, 
a) the Euclid distance of the target > 2 times of average of 
those in training set, b) number of estimated users > 20  (which 
corresponds to minimum of 2,000 people in the mesh) and c) 
number of estimated users > average number of users in the 
training set for the LPE classifier. 

IV. EVALUATION 

We implemented the proposed method on a Hadoop cluster 
and simulated the real time event detection for each 500m 
mesh in the Kanto region. We used the number of users in the 
mesh as the feature, used 4 months from June 2014 to the 
September of this year for generating training set and tested our 
method during 2 months (July and August of 2014).   

For evaluation, we selected 50 events, which are considered 
initially as large (events with approximately more than 10,000 
people), including sports, concerts and festivals and calculated 
the F-score for the 33 meshes where the 50 events took place, 
compared with conventional statistical approach (using average 
as the threshold parameter). Here we use the criteria of ‘true’ as 
two consecutive positives from the method before 30 minute 
later of the start time of an event. Table 1 shows the overall 
result. Our method report 261 two consecutive positives while 
we found manually 209 events from the Internet. Thus the 
precision is 209/261=0.80. For the pre-selected 50 events, the 
method reported 31. The recall is 31/50=0.62. The recall value 
is low because 15 of the pre-selected events are smaller than 
we had expected and from the number of estimated users they 
are not distinguishable to the no-event days. If we remove such 
events from the pre-selected set, the recall value will increase 
up to 31/35=0.89 and F-score will be 0.85, respectively. 

Fig. 2 shows an example of automatic generation of 
training set at the mesh with a large arena (Saitama Super 

Arena) and Fig. 3 shows the detected events using the training 
set. Fig. 2 shows that most of the events are clustered into non-
training sets, except a few events for weekends and holidays. 
Fig.3 shows that all events reported in this mesh are 
corresponded to actual events including the concert on July 5

th
. 

TABLE I.  EVALUATION RESULTS 

 Precision Recall F-score 

Statistical Approacha)
 192/234=0.82 25/50=0.50 0.62 

Our Proposal 209/261=0.80 31/50=0.62 0.70 

a. At the maximum of F-score (1.8 times average value as a threshold). 

 

Fig. 2 Example of generated training set (Saitama Super Arena) 

 

Fig. 3 Events detected (Saitama Super Arena) 

V. CONLUSION 

In this paper, we presented a real time event detection 
method from CDRs based on LPE algorithm. Through 
empirical evaluation of large area in Japan with actual telecom 
dataset, we showed that our method is better than the 
conventional approach. This research is supported by Ministry 
of Internal Affairs and Communications on “Research and 
Development of Technologies for the Utilization of Real-time 
Information on Geospatial Platforms”.  
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LPE (Original) Whole day’s data (hourly data)

Shorter window size (e.g. 4 hours) 
with dense data (e.g. 5 minutes)

Slide window along time axis and run repeatedly

Proposed Method
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53396570101000500 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570101300530 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570102000600 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570102300630 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570103000700 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570103300730 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570104000800 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570104300830 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570105000900 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570105300930 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570106001000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570106301030 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570107001100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570107301130 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570108001200 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 88.89% 88.89% 0.00% 0.00% 0.00% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570108301230 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
53396570109001300 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 95.95% 0.00% 0.00%
53396570109301330 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00%
53396570110001400 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00%
53396570110301430 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00% 95.95% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00%
53396570111001500 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00% 97.30% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00%
53396570111301530 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00% 97.30% 94.59% 97.30% 0.00% 97.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 94.52% 98.63% 95.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00%
53396570112001600 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00% 97.30% 97.30% 97.30% 0.00% 97.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 94.52% 98.63% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 94.74%
53396570112301630 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00% 97.30% 97.30% 97.30% 0.00% 97.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 94.52% 98.63% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 94.74%
53396570113001700 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00% 97.30% 97.30% 97.30% 0.00% 98.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 95.89% 98.63% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 94.74%
53396570113301730 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00% 98.65% 97.30% 98.65% 94.59% 98.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 95.89% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 94.59% 97.26% 98.63% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 94.74%
53396570114001800 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 0.00% 98.65% 98.65% 98.65% 97.30% 98.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 95.89% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 98.65% 97.26% 98.63% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 94.74%
53396570114301830 0.00% 0.00% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 98.65% 98.65% 98.65% 98.65% 98.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 93.24% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 94.52% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 98.65% 95.89% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 94.74%
53396570115001900 0.00% 0.00% 98.63% 95.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 98.65% 98.65% 98.65% 98.65% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.65% 0.00% 94.44% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 94.52% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 98.65% 93.15% 95.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570115301930 0.00% 0.00% 98.63% 95.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 89.47% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 94.44% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 100.00% 91.78% 93.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570116002000 0.00% 0.00% 100.00% 97.26% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 98.63% 0.00% 0.00% 0.00% 100.00% 91.78% 93.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570116302030 94.74% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 97.26% 0.00% 0.00% 0.00% 100.00% 90.41% 91.78% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570117002100 100.00% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 94.52% 0.00% 0.00% 0.00% 100.00% 0.00% 91.78% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570117302130 100.00% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 93.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570118002200 100.00% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 94.44% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 93.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570118302230 94.74% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 83.33% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 95.89% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 93.15% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570119002300 94.74% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 94.52% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570119302330 94.74% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 94.52% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 94.74% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%
53396570120002400 94.74% 0.00% 100.00% 98.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.30% 0.00% 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 94.74% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00%

○ ○ ○ × × × ○ × × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○ ○ ○ × × ○ ○ ○ ○ × × ○ ○ ○ ○ ○
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Measuring global and regional influence of cites using geolocated tweets

José J. Ramasco,1 Maxime Lenormand,1 Bruno Gonçalves,2, 3 and Antònia Tugores1

1Instituto de F́ısica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain
2Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France
3Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France

The study of competition and interactions between
cities has a long history in fields such as Geography, Spa-
tial Economics and Urbanism [1–3]. This research has
taken traditionally as basis information on finance ex-
changes, sharing of firm headquarters, number of passen-
gers transported by air or tons of cargo dispatched from
one city to another. One can define a network relying on
each of these indicators and identify the so-called World
Cities, those with a higher level of centrality as the global
economic or logistic centers. In most of these analysis,
London and New York rank as the most central cities in
terms of economic influence and transport network cen-
trality.

In this work, we take a radically different approach
to measure quantitatively the influence of a city in the
world. Nowadays, geolocalized devices generate a large
quantity of real time and geolocated data allowing us to
understand how people move throughout time and space.
It is now possible to explore human mobility in detail us-
ing geolocalized data generated by mobile phones, credit
cards, transport cards or GPS. In this study we use a
Twitter database containing 20 millions of geo-located
tweets worldwide recorded during a period of 1000 days
to measure and compare the influence of 58 cities. The
aim here is to search for an answer to the questions raised
by the following thought experiment: an announcement
with a particular message is displayed in the most centric
place of a city. People seeing it, whether tourist or locals,
will later travel throughout the world. Which would be
the city most efficient as source for these travels? Un-
derstating as efficient that able to spread further or more
extensively the message by personal user movements. Is
there a difference between the classification obtained with
locals or visitors?

FIG. 1: Local Twitter users mobility network between the 58
cities. Only the flows representing the top 95% of the total
flow have been plotted. The flows are drawn from the least
to the greatest.

We use the Twitter data in order to tackle these ques-
tions. First , we consider the displacements of users vis-
iting each city. The urban areas are ranked according to
the area covered and the radius traveled by these users
as a function of time. These metrics are inspired by the
framework developed for random walks and Levy flights,
which allows us to characterize the evolution of the sys-
tem with well defined mathematical tools and with a clear
reference baseline in mind. The ranks change dramati-
cally when one has into account these measures, showing
as two top rankers cities such as Rome and Hong Kong
that either are large centers of global touristic attraction
or are gates to the extensive hinterland of countries such
as China. When the users are separated by visitors and
locals, we find that the main contribution to the general
ranking comes from visitors and that if only locals are
taking into account the raking is modified even though
not dramatically.

For getting these previous results all the Twitter pop-
ulation is considered, regardless of the fact that the users
mobility takes place in a city or in rural areas. The
only condition is that the user passed at certain moment
through the city under consideration but the analysis is
based on all his/her posterior movements without dis-
cerning travels to rural and urban areas However, many
previous studies were focused mostly on cities and inter-
changes between them. To be able to compare, we re-
strict the analysis to users residing in an urban area and
to their movements toward other cities. In this way, we
obtain a weighted directed network between cities, whose
links weights represent the (normalized) fluxes of users
traveling from one city to another. This network pro-
vides the basis for a more traditional centrality analysis,
in which we recover London and New York as the most
central cities at a global scale. Still, the network also al-
lows us to run clustering techniques and divide the world
city network in communities or areas of influence. This
division of the network with some of the most intense
connections is shown in Figure 1. When the centrality
is studied only within each community, we obtain a re-
gional perspective that induces a ranking of cities. The
comparison between the global and the regional ranking
provides also with important insights in the hierarchy of
world urban areas.
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Empirical Evaluation of Disaggregated Trip Data
Collected from Cellular Networks

Peter Widhalm
Austrian Institute of Technology
Giefinggasse 2, A-1210 Vienna
Email: peter.widhalm@ait.ac.at

Michael Ulm
Austrian Institute of Technology
Giefinggasse 2, A-1210 Vienna
Email: michael.ulm@ait.ac.at

I. INTRODUCTION

Over the last decade a number of methods have been
proposed in the literature to use trip data collected from
cellular networks for estimating travel demand, i.e. Origin-
Destination matrices, and analyzing human mobility patterns.
But how reliable are the trips extracted from cellular traces?
In previous work validation was conducted by comparing the
spatial and temporal distribution of trips to traditional mobility
surveys [1]. The authors in [2] compare different interpolation
methods for mobile phone traces and evaluate their spatial
errors by subsampling smartphone user position trajectories
with different subsampling ratios. An evaluation of trajectory
filtering techniques to reduce spatial errors in cell phone tracks
is presented in [3]. However, there is still very little empirical
knowledge about achievable trip detection rates and the spatio-
temporal precision of the extracted trip data at a disaggregated
level. With this study we hope to fill this gap.

We report the results of an empirical evaluation conducted
with 241 individuals who used a smartphone to record all
their trips over a period of one week. A specialized logging
software collected their GPS traces along with the cells the
mobile was connected to and the points in time when the
device communicated with the mobile network (phone usage
and Location Area Update events). In addition, we asked
the participants to annotate their tracks with trip start and
end points. We generate cellular trajectories by mapping the
recorded cell IDs to estimated geographic locations and sub-
sampling the trajectory according to the empirical frequency
of mobile communications (phone usage) and logged Location
Area transitions. From the resulting cellular trajectory we
try to recover the original trips and use the annotated GPS
positions and time stamps of the recorded trips as “ground
truth” for validation. We apply a simple and frequently used
trip extraction method described, e.g., in [4], [5], [6] and
also test three extensions to the algorithm (see Sect. II). We
analyze trip detection and error rates measured as sensitivity
(true positive rate) and precision (positive predictive value) of
the trip extraction method and plot it against trip length, stay
duration at the trip destination and time of day. We evaluate the
temporal errors of the extracted trips and the spatial uncertainty
of trip origins and destinations. In addition, we demonstrate
the impact of different parameter settings and evaluate how
the results are affected by the inclusion of Location Area
Update records, which are independent from phone usage and
are issued whenever the mobile device enters a new Location
Area.
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Fig. 1: Sensitivity analysis of the parameters used for trip
extraction.

basic interpol.+ +low-pass without
algorithm geometry filter LA-Updates

sensitivity: 47.0% 68.7% 66.4% 49.5%
precision: 91.6% 74.2% 79.7% 86.5%
F1-score: 62.1% 71.3% 72.4% 63.0%

TABLE I: Sensitivity, precision and F1-score of the basic trip
extraction algorithm and the proposed extensions.

II. TRIP EXTRACTION

The basic trip extraction procedure can be summarized as
follows: consecutive cell locations where all pairwise distances
are below a threshold d are fused together and their coordinates
are averaged to compute a centroid position. The timestamps
of the first and the last record are used to approximate the
time of arrival and departure. Trip origins and destinations
are distinguished from “passing-by points”, i.e. points along a
traveled route, by introducing a minimum stay duration t.

In practice there are several kinds of errors and situations
when this trip extraction approach may fail:

1) trips shorter than d are likely not to be detected,
unless spatial errors add to the actual trip length;
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on the other hand, if d is too small, pure signal
movement will generate fictitious trips;

2) if the stay duration at the trip destination is shorter
than t the trip is likely not to be detected, unless
the stay duration is overestimated due to the spatial
uncertainty and the fusion of cell locations; on the
other hand, if t is too small, many points along
a traveled route will be wrongly detected as trip
destinations (e.g. waiting time at transport hubs or
due to road congestion);

3) the sparse and irregular temporal sampling of cellular
trajectories introduces interpolation errors and uncer-
tainties in the estimated arrival and departure times;
the trip detection rate therefore depends on phone
usage and actual stay duration;

4) Location Area (LA) Update events are triggered by
motion rather than phone usage and can therefore
improve trip detection; on the other hand these
records can cause large interpolation errors: it can be
assumed that devices issuing an LA Update event are
currently moving and that the actual trip destination
is somewhere else. As a consequence, LA Update
records can introduce large spatial and temporal er-
rors to the extracted trip data or generate fictitious
trip destinations.

In addition to the basic trip extraction algorithm we eval-
uate the following extensions to reduce these kinds of errors:

1) interpolating the trajectory based on space-time-
prisms [7] and estimating upper and lower bounds
as well as an expected value of the stay duration
in order to improve the arrival, departure and stay
duration estimates (Fig. 2a);

2) including the trajectory’s geometry in the trip extrac-
tion procedure to better distinguish trip destinations
from “passing-by points” along the traveled route: for
triplets (A, B, C) of successive locations we define a
threshold ι of the “indirection” ratio (AB+BC)/AC
(Fig. 2b).

3) low-pass filtering based on an assumed straight-line
travel speed vmax to reduce noise and fictitious trips
(Fig. 2c);

These extensions are described in detail in [8].

III. RESULTS

The results of the sensitivity analysis of the parameters
used in the trip extraction algorithm are shown in Figure 1. The
optimal value of distance parameter d that maximizes the F1-
score (i.e. the harmonic mean of sensitivity and precision) was
d = 1000m, but all settings with 500 < d < 1500m resulted
in similar scores. For large ranges of duration parameter
t, geometry parameter ι, and speed parameter vmax there
was almost a one-to-one trade-off between sensitivity and
precision: fixing the distance parameter to it’s optimal value
the F1-score varied only little for all parameter settings with
ι > 1.1, vmax > 8m/s, and 6 < t < 60min. The highest F1-
score was obtained for ι = 1.2, vmax = 18m/s and t = 24min.
Choosing parameter values maximizing the F1-score resulted
in approximately 66% sensitivity and 80% precision.

(a) space-time prisms

(b) geometry (c) low-pass filter

Fig. 2: Extensions to the basic trip extraction procedure.
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Fig. 3: Errors (top row) and error magnitudes (bottom row)
of arrival time, departure time and stay duration estimates
resulting from linear interpolation (red) and interpolation based
on space-time prisms (green).

The results achieved with the basic trip extraction algorithm
and it’s extensions are detailed in Table I. Combining the
space-time prism approach (extension 1) with analysis of the
geometry of the cellular trajectory (extension 2) significantly
improved the trip detection rate as compared to the basic al-
gorithm. The reason is that linear interpolation underestimates
the stay durations at visited locations. As shown in Figure 3,
the interpolation scheme based on space-time prisms improved
the estimates of trip start times, end times, and stay durations.
However, in some cases it overestimated the stay durations, and
as a consequence the number of fictitious trips was increased,
which is reflected by a lower precision percentage. Applying
a low-pass filter (extension 3) reduced the number of fictitious
trips due to noise. This improved precision by 5.5%, but on
the other hand it also reduced sensitivity by 2.3%. Excluding
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Fig. 4: Spatial error.
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Fig. 5: Sensitivity vs. stay duration and straight-line trip length.

Location Area Update events from the cellular traces reduced
the trip detection rate by 16.9% but improved precision by
6.8%.

As expected, the detection rate (sensitivity) increases with
the straight-line trip length and the stay duration at the trip
destination, which is shown in Figure 5. For example, for trips
with straight-line lengths greater than 2km and stay durations
greater than 1 hour, the detection rate rose to 82%.

The spatial error distribution of the trip origins and des-
tinations is given in Figure 4. Including Location Area Up-
date events in the cellular traces increased the spatial error
significantly. There was also a significant difference in the
positioning errors between locations within and outside the
metropolitan area of Vienna, due to different network density
and antenna ranges. The positioning errors could be roughly
approximated by analyzing the distances of GPS measure-
ments in the OpenCellID database [9] to the estimated cell

centroid. This could be useful to estimate spatial errors for
other countries and regions without re-conducting empirical
investigations.

In summary, these results show that the evaluated exten-
sions of the basic trip extraction algorithm improved the results
as measured by the achieved F1-score. However, there are
strong trade-offs between detection sensitivity and precision
scores, and spatio-temporal errors, which means that the op-
timal trip extraction algorithm and parameter settings depend
largely on the intended application and it’s requirements. As
expected, the trip detection rate is correlated to stay duration
at the trip destination and straight-line trip length. Including
Location Area Update records increases sensitivity but at the
same time reduces precision and worsens the spatio-temporal
errors. Since Location Area Update events are issued by
devices moving between Location Areas and generally do not
indicate trip origins and destinations, these records require
a different interpolation approach than event records due to
phone usage.

Future work includes analysis of selection biases in cellular
data, i.e. distortions by over- or under-representation of groups
of people depending on their age, sex, income, social role or
other socioeconomic factors, or biases in the detection of trips
depending on their purpose.
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“I don’t have a photograph, but you can have my
footprints.”

Chris Riederer, Sebastian Zimmeck, Coralie Phanord, Augustin Chaintreau, Steven M. Bellovin
Computer Science Department, Columbia University, New York, NY

{mani,sebastian,augustin,smb}@cs.columbia.edu, Coralie.S.Phanord.16@dartmouth.edu
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Figure 1: Accuracy of predicting ethnicity for five algorithm
classes and various granularity ranges of location data.

Location data collected through GPS are routinely
available to a plethora of websites, apps, and third party
services. They are increasingly used to learn user char-
acteristics particularly for purposes of behavioral and
contextual advertising. While the identification risk
of location information has been widely reported, its
discriminative risk has received much less attention so
far. Documenting this characteristic of location data
requires an understanding of mobility at a demographic
level; it raises methodological challenges of reproducibil-
ity, extensibility, and accuracy, all of which are hard to
solve from a technical and ethical standpoint.

In our work, we fill this gap for the first time demon-
strating which demographic traits can be inferred from
users’ geographical footprints. We leverage the growing
body of public evidence in photo-sharing services. Us-
ing a corpus of geo-tagged photos from Instagram and
Foursquare, we show that discriminative demographic
information can be inferred from visited locations. In
particular, we show that it is possible to predict a user’s
ethnicity with reasonable accuracy (Figure 1). Further-
more, we show that human location trends observed in
census data can be reliably reproduced from the pub-
licly available Instagram data (Figure 2).
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Figure 2: Top: Comparison of ethnicity according to census (left
column) and Instagram location data points (right column) for
various counties in New York State. Bottom: Instagram location
data points colored by ethnicity in New York City.
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Longitudinal Human Mobility and Real-time Access to a 
National Density Surface of Retail Outlets 

 

Thomas R. Kirchner1,2  Hong Gao2, Andrew Anesetti-Rothermel2, Heather Carlos3, Brian House4 
 

1 New York University, NY, USA 
2 The Schroeder Institute at Legacy, Washington, DC, USA 
3 Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA 
4 Brown University, Providence, RI, USA 

ABSTRACT 

Health-related behaviors occur as part of a broad socio-ecological 
context that unfolds dynamically over time.  It is important to improve 
our understanding of the way health-related features within cities affect 
the health of citizens traveling through their streets.  In this paper we 
present the development of a national density surface of convenience, 
grocery and gas outlets, and explore the way real-time access to these 
outlets varies as a function of both their density and the mobility patterns 
of residents.   
1. INTRODUCTION 
The link between cities and the health of their citizens represents a 
rapidly evolving area of scientific inquiry[1]. It is increasingly 
clear that there are large individual differences in mobility patterns 
that drive a dynamic interaction between individuals and their 
surroundings over time[2-4]. Conceptions of the urban environmental  
impact on health as static fail to account for the mobility and preferences 
of citizens actively engaging with their real-time context.  Evidence 
from the growing literature on human mobility[2, 3] supports the 
notion that mobility patterns determine environmental exposure 
levels more than static factors like a person’s place of residence. 
Yet methods for continuous quantification of accumulating levels 
of exposure to features in the built environment are only now being 
developed.   
In this paper we present the development of a framework for the study of 
human mobility and real-time access to the landscape of point-of-sale 
products available across the US, a factor with indisputable implications 
for a range of health related behaviors[5-7]. This begins with a national 
probability density surface representing the continuous landscape of 
convenience, grocery and gas outlets in the US.  We then overlay 
longitudinal human mobility data collected from a sample of 550 people 
who have voluntarily recorded their real-time geographic location via 
their cellular phone every 10-minutes over an average of 3 months, 
resulting in an average of 10,635 observations per user.  Analyses 
examine the extent to which the dynamic nature of participants’ mobility 
patterns interacts with their real-time surroundings and thus determines 
their day-to-day access to products sold in retail convenience stores.  
Variations across urban areas and over time provide insight and identify 
targets of intervention for both urban planners and public health 
practitioners. 

2. METHOD 
2.1 Retail Density Surface 
A nationwide density surface of convenience and related retail 
outlet locations was generated using kernel density estimation 
(KDE).  The empirical basis for this probability density surface 
was a national dataset of retail outlets, identified by North 
American Industry Classification Systems (NAICS) codes[8]. The 

final dataset included N = 269,781 retail outlets (Figure 1). To 
quantify individuals’ real-time access to retail outlets, a static 
bandwidth KDE approach was carried out with the spatial analyst 
density toolset in ArcGIS v.10.1 software. The resulting density 
surface had a fixed 5-mile bandwidth and a cell size of 250 meters.  
Zonal statistics of the final density surface was calculated for zip 
code tabulation areas (ZCTAs)[9] in the United States. The 
average retail outlet density per ZCTA was then linked to each 
real-time mobility coordinate contributed by the participants in our 
geo-location tracking sample. 

Figure 1.  National Density Surface: US Convenience Retail 

 
 

2.2 Longitudinal Mobility Data 
Geolocation tracking made it possible to physically link each person’s 
real-time location to the probabilistically continuous landscape of 
convenience stores across the US. Mobility data comes from 
OpenPaths<https://openpaths.cc>, launched by the New York 
Times Company Research and Development Lab in May of 
2011[10]. OpenPaths collects GPS location information through 
iOS and Android location tracking applications. These applications 
utilized multiple approaches to geographic location capture, including 
both direct satellite GPS coordinates (when available) and wireless 
network-based “assisted” geo-location estimation via trilateration among 
cellular towers and wireless data access points.  

2015

33

C
o

n
fe

re
n

ce

S
e

ss
io

n
 4

 ::
 S

o
ci

e
tie

s 
(I)

S
e

ss
io

n
 3

 ::
 E

co
n

o
m

ie
s

S
e

ss
io

n
 2

 ::
 C

iti
e

s 
(I)

S
e

ss
io

n
 1

 ::
 M

o
b

ili
ty

S
e

ss
io

n
 5

 ::
 S

o
ci

e
tie

s 
(II

)

S
e

ss
io

n
 6

 ::
 C

iti
e

s 
(II

)

S
e

ss
io

n
 7

 ::
 C

ro
w

d
s

P
o

st
e

r 
S

e
ss

io
n

 1
 ::

 A
p

ril
 8

P
o

st
e

r 
S

e
ss

io
n

 2
 ::

 A
p

ril
 9



Figure 2.  Human Mobility Cohort 

 
 

The longitudinal mobility dataset contains 3,440,821 observations 
collected from 859 individuals worldwide from 03/01/2012 to 
12/31/2013, which was then clipped to United States using state 
outline polygons published by United States Census Bureau, 
yielding a US cohort of 550 individuals with 2,013,042 
observations recording during the present observation period. The 
total number of locations contributed by each individual ranges 
from 1 to 79,602 with a mean at 10,635.39 and standard deviation 
of 15,189.44. The number of days falls between 1 and 670 with a 
mean of 202.52  (SD=181.79 days).  
2.2.1 States of residence 
Noteworthy, 19.33% of the data (N= 389,058) falls in California, 
and 14.45% (N= 290,854) in New York. All other states have 
66.22% (N= 1,333,130). Given nice contrast in terms of geo-
locations, climate, built-in environment, etc., between New York 
and California, the two states are entered as covariates in all 
models.  

2.3 Radius of Gyration 
Radius of gyration measures the distance a person travels within a 
certain time period[3]. It defines by the standard deviation between 
locations and their center of mass:  

𝑟!! =
1
𝑁

(𝑟! − 𝑟!"#$)!
!

!!!

 

In this paper, hourly radius of gyration was obtained for each 
individual, resulting in 747,347 total observations. Validity of the 
data is supported by observation of expected patterns of mobility, 
such as that related to weekdays and weekends.  Figure 3 illustrates 
the daily drop in mobility across the early morning hours, followed 
by a steep rise across the middle of the day, and then divergence on 
Friday, Saturday and Sunday, with late Sunday revealed as the 
window of greatest mobility, as travelers who departed on either 
Friday or Saturday return home.  

Overall, mean radius of gyration is 1.93 kilometers per hour with a 
4.41 kilometers standard deviation. Minimum and maximum are 0 
and 119.51 kilometers. Within each day, 𝒓𝒈 was the lowest early 
and higher across the remainder of the day.  We see a spike in 𝒓𝒈 
mid-day on weekdays – and generally more variation on weekdays. 

Figure 3.  𝒓𝒈 over 24-hr clock as function of day of week. 

 

2.4 Real-time Retail Access 
Real-time access to the retail density surface was defined as the 
product of each participant’s radius of gyration within each hour 
under observation and their average retail outlet density value for 
each mobility coordinate recorded within the same hour. 
Conceptually, this “Access” variable accumulated the number of 
retail options participants had as they moved, and as expected from 
a count variable of this kind, the observed distribution was heavily 
skewed right, and thus not a reasonable fit for the assumptions of 
the general linear model (see Section 3.1).  Access was therefore 
stratified into deciles (plus an additional level for values of zero), 
effectively transforming it into a categorical variable with 11 levels 
from 0 to 10 corresponding to growing access to retail products.  
Non-parametric categorical data analysis methods were then 
employed as describe in Section 3.1. 

3. STATISTICAL ANALYSES 
3.1 Best-in-class Model Selection 
 
Table 1.  Step-down contrasts of "best-in-class" models 
 
Model (Model'Terms) Deviance df p G2 Δ'df χ2'(Δdf;'0.001)
1 (N,'W,'T,'S,'A) 1.11E+08 698 0.00 110496519.6 337 135.807
2 (NTA,'WTA,'NWT,'NTS,'TSA,'NSA,'WSA) 258972.5 361 1.00 62639.4 22 67.459
3 (NTA,'WTA,'NWT,'NWA,'NAS,'NTS,'TSA,'WSA,'WTS,'NWS) 196333 339 1.00 8189.4 75 100.425
4 (NTSA,'NWTA) 188143.5 264 1.00 164905.4 174 135.807
5 (NWTA,'NWST,'NTSA,'WTSA,'NWSA) 23238.13 90 1.00 23404.8 90 124.116
6 (NWTSA) K166.6045 0 1.00 K K K

N:'NY'versus'CA
W:'weekend
T:'time'of'day
S:'season
A:'access'to'retail

Hierarchically nested model comparison techniques were used to 
iteratively identify the most parsimonious combination of factors 
required to explain the observed data. Table 1 presents an 
overview of the best-in-class model selection process that sought 
to identify the most parsimonious model form, defined as the 
minimal set of parameters required to provide and adequate fit to 
the observed data.  The initial basis for comparison is Model 6, 
which is the saturated model that corresponds perfectly to the raw 
data, having degrees of freedom (df=0) equivalent to the total 
number of cells minus all interactive combinations of the 5 factors 
under study here: retail Access (the conceptual DV), State (i.e., NY 
as reference), Weekend, TOD, Season.  Stepping-down from the 
saturated model, Model 2 in Table 1 fits the data well while only 
including 342 of the total 704 cells under study. This is thus the 
most parsimonious model, effectively isolating an informative 
pattern in the data that then becomes the basis for inference and 
conclusions. 
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Figure 4. Access by Time of Day in California and New York 

 
Figure 4 highlights the pattern of interaction NTA (State, Time of 
Day, and Access) in Model 2, Table 1. It reveals the different 
Access level across time of day between New York and California. 
Elevated Access spikes in the middle of the day in New York and 
again in late night, while in California, Access peaks in late 
afternoon.  
 

Figure 5. Access by Time of Day between Weekday and 
Weekend 

 
 

Figure 5 presents the different Access patterns in time of day 
between weekday and weekend. On weekdays, Access spikes in 
the middle of the day, probably due to high movement and high 
exposure to retail outlets during lunchtime. In contrast, on 
weekends, Access elevates in early evening and late night, which 
could probably be explained by going out and returning home for 
weekend activities.  

4. CONCLUSIONS 
Results of this paper shed additional light on the nature of real-
time retail Access, especially as it compares to the static 
aggregated density of outlets alone. The contrast between New 
York and California is particularly useful on this point.  First of all, 
outlet density peaks much higher in New York than in California, 
while California and its urban sprawl is characterized by more 
widely distributed yet moderate to low levels of density.  Second, 
radius of gyration is consistently higher in California than in New 
York, and exhibits an entirely different cyclic pattern. This pattern 
of results demonstrates the kind of insight that can be gained by 
considering both POIs and dynamic mobility patterns.  
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Bandicoot: a Python toolbox to extract

behavioral indicators from mobile phone

metadata

Yves-Alexandre de Montjoye1, Luc Rocher, Alex ‘Sandy’ Pentland
∗Corresponding author (yvesalexandre@demontjoye.com)

Mobile phone data, also called call detail record (CDR), have been used ex-
tensively by researchers in computational social science [4]. Researchers have
compared the recent availability of large-scale behavioral data sets to the in-
vention of the microscope [3]. Mobile phone metadata have for example been
used to detect communities inside countries [1], analyze the impact of mobility
on malaria [7], and to predict the personality [2] or gender [6] of users. There
exist, however, a growing need for standardized and privacy-preserving methods
to analyze mobile phone metadata datasets.

Bandicoot is an open-source Python toolbox to process mobile phone meta-
data. Bandicoot loads individuals metadata and attribute text files for a given
user and all its contacts as well as a tower file. It then computes, on a weekly
basis, 30 behavioral indicator for the user and return their mean, median, and
standard deviation. The behavioral indicators falls into 3 categories: individual
level (number of call, text response rate. . . ), spatial patterns (radius of gyra-
tion, entropy of places. . . ), and at the social network level (clustering coefficient,
assortativity. . . ). Bandicoot then provides easy to use functions to export in a
CSV file the behavioral indicators of a set of users as well as potential missing
data.

Overall, Bandicoot provides a complete easy-to-use environment for researchers
using mobile phone metadata. It allows them to easily load their data, perform
analysis, and export their results with a few line of codes. Its standardized met-
rics and tested code helps researcher compare results across studies, see figure 1
for a visual overview. The toolbox is easy to extended and contains an extensive
documentation with guides and examples.

Bandicoot has already been used in combination with machine learning al-
gorithms to label datasets and to run large-scale experiments [5].

1
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INTERACTION NETWORK
34 text messages / 22 calls
5 contacts

MOBILITY
14 places visited

user

CALLS

TEXTS

light/light outgoing, dark/dark incoming 

1/1/15 1/5/15

Figure 1: Visual features of a user’s records
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ABSTRACT
When a large-scale disaster occurs in downtown Tokyo,
Japanese government has to provide a sufficient number of
temporary camp sites or shelters for stranded commuters who
cannot go back their home except that they have to keep
walking several hours. Hence, It is necessary for the gov-
ernment to estimate exactly a number of potential candidate
of stranded commuters in daily life. As commute types, train
has been 76% of motorized transports (Train, Bus, Car) in
Tokyo. Therefore, we suppose train commuters to be almost
candidates of stranded commuters. For disaster measure for
government, we proposed detecting method of the train com-
muters from CDRs and GIS information of train routes. As
a result of our experiment, the average of the accuracy for
detecting a train commuter is 75%.

INTRODUCTION
There are a lot of train commuters in Downtown Tokyo, since
Tokyo has a huge train network including underground lines
has been grown compared with other city in the world. As
transport types for commute, train has actually been 76% of
motorized transports (Train, Bus, Car) in Tokyo. In other
words, train has been a main transportation for commutes in
metropolitan Tokyo.

When a large-scale disaster occurs in a metropolitan area, a
government has to provide sufficient number of temporary
camp sites or shelters for stranded commuters who cannot
go back their home except that they have to keep walking
for many hours. At the Great East Japan Earthquake, practi-
cally there were 3.5 million people as stranded commuters in
city of Tokyo. For securing temporary evacuations for such
stranded commuters, we should estimate a number of poten-
tial candidate of stranded commuters in daily life.

In case of Tokyo, we suppose train commuters to be almost
potential candidates of stranded commuters. Therefore, we
proposed estimating method of train commuters in daily life.
To detect train commuters, our method utilizes algorithms of
supervised machine learnings with CDRs and GIS informa-
tion of train routes. And also we evaluate the accuracy of
our proposed method using CDRs data of 1,000 volunteers
during 1 month (March, 2014). As a result of our experi-
ment, the average of the accuracy for detecting a train com-
muter is 75%. Figure 1 is shown an example result of our
proposed method. Black dots, Blue dots and Red dots mean
locations from CDRs which a user is on a train, all locations
from CDRs and train stations, respectively.

RELATED WORKS

Figure 1. An Example result of our proposed method

There have been a number of conventional approaches[1-8] to
determine the transportation mode including train commute.
Hemminki et al.[3] uses only accelerometers for distinguish-
ing different modalities while testing the system across a few
cities. They obtain impressive results around 80%. However,
they needs to keep sensing accelerometer during detecting
a mode of transit without considering energy consumption.
And also the method needs to install special sensing applica-
tion to a user’s smartphone.

Zhou et al.[4] utilize accelerometer, audio sensor and cell
tower sequences of a smart phone to identify whether the user
is on public transit or car, which mostly works for bus detec-
tion. The proposed method is energy efficient because they
use cell tower sequences rather than GPS. However, a train-
ing of a cell tower sequence is required for all routes. it takes
a long time to add new routes.

Rahul et al.[5] uses several sensors on smart phone and GIS
information. Their contributions are that they reduce learning
time of sensor data using General Transit Feed Specification
(GTFS) which describes schedule for public transits. An ac-
curacy of the proposed system is around 85%. However, they
might not deploy new countries since opened GTFS are not
so sufficient in the world.

Our proposed system utilizes location information from
CDRs which generate when a user just uses his phone in daily
life. Therefore, the system does not impose a user to consume
energy of his phone and install a specific app for detecting his
mode of transit.

PROPOSED SYSTEM
We show two phases of operation as the system architecture
in Figure 2. Our proposed system estimates train commuters
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Figure 2. A System architecture of a proposed method

using supervised machine learnings. In the learning phase,
the system gets the location data (learning data) from CDRs
of some train commuters who exactly utilize a train as trans-
port types for commute. Next, it extracts features of such data
and generates a classifier model. In the classifying phase, the
system classifies whether a train commuter or not using the
generated classifier model. In next section, we describe de-
tails of a method for feature extraction.

Feature extraction
Before feature extraction, as data cleaning process, we ex-
clude location data which moving velocity is 0 km/h or over
150 km/h between previous location and it from a data set
for feature extraction. Table 1 is shown all features of our
method.

Similarity to a train line
We calculate a minimum distance di between a shape of a
train line and location data (l1, l2, ...li) from CDRs. GIS in-
formation of train routes is provided from Geographical Sur-
vey Institute of Japan. A similarity to a train line is expressed
as a rate of a number of di not exceeding a threshold drail to a
number of all di. We set 100m, 300m, and 500m as threshold
drail in our system.

Moving velocity
A moving velocity vi is expressed as a velocity between 2
locations in a sequence of time series. We adopt an average,
a median, and a maximum as value of features.

EXPERIMENT AND EVALUATION
We evaluate an accuracy of estimation of train commuters us-
ing a generated classifier . To collect learning data for train
commuters, we interview to applicants (commuters) to get a
type of transport for a daily commute. At the same time, we

Table 1. Features for Estimation of Train Commuters

Features
1. Distance between train line and location data

Threshold : drail = 100, 300, 500(m)

2. Moving Velocity over vrail and Dist between train line and location
Threshold : vrail = 20, 40(km/h)

3. The Average of Moving Velocity
4. The Median of Moving Velocity
5. The Maximum of Moving Velocity
6. The Average Moving Distane in a day
7. Distance between home and work

Table 2. A comparison of accuracies among machine learning algo-
rithms

Metric k-NN LR SVM RF

Accuracy 0.734 0.721 0.742 0.751
Precision 0.734 0.721 0.735 0.751
Recall 0.733 0.731 0.747 0.751
F-measure 0.733 0.726 0.741 0.751

obtain an individual permission for getting CDRs in advance
from the applicants.

Experiment of a public interview
We held a public interview throughout the internet for gath-
ering a type of main transport for a daily commute and for
getting an individual permission to analyze CDRs. The tar-
get of this interview is from 18 old to 60 old. The period for
getting CDRs is 1 month, March 2014. At the end of the ex-
periment, we got results of the interview and CDRs of 1, 000
people in this experiment.

Evaluation
We created learning data for a machine learning from 1,000
people results of the experiment. In the results of the inter-
view, there were 460 people who utilize trains for daily com-
mute and 540 people who does not. We calculated features
from CDRs of 1000 people in 1 month. Finally, we generated
a classifier using the results of the interview and the features.
As an assumption of this work, we do not care about subway
lines, since location from CDRs does not support a localiza-
tion in underground. Therefore, above 460 people did not use
subway lines.

We use k-Nearest Neighbor(k-NN), Logistic regression(LR),
Support Vector Machine(SVM) and Random Forest(RF) for
classifier algorithms of this evaluation. we evaluate our clas-
sifier model using k-fold cross-validation(k = 3). Table2 is
shown accuracy, precision, recall, F-measure for each algo-
rithm. There is not much different in meaning among each
algorithms. We seem that Random Forest is the better since
the average of each metric is 0.75.

CONCLUSION AND FUTURE WORK
In this paper, we proposed detecting method of the train com-
muters from CDRs and GIS information of train routes. As
contributions of this work, our system utilizes only location
information from CDRs which generate when a user just uses
his phone in daily life. Therefore, the system does not impose
a user to consume energy of his phone and install a specific
app for detecting his mode of transit. From the result of the
evaluation, the estimation accuracy of mode of transportation
in this work is less than other conventional works that use
sensors on mobile phones. However, our method still needs
to optimize the features from CDRs as a future work.
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The tremendous surge in demand for wireless 

broadband data is testing the limits of the resources of 

wireless networks. Wireless operators have to keep a 

satisfactory quality of service (QoS) by guaranteeing 

certain levels of blocking/dropping probabilities. 

However, bandwidth-hungry applications frequently 

result in congestion. To cope with QoS guarantees, 

operators have the option to either expand their 

wireless capacity or manage the traffic using price as a 

control tool. Typically, the former is a costly approach, 

while the latter is the worthwhile approach. In this 

paper, we present a new dynamic pricing model using 

the so-called agent based approach for two purposes: to 

promote the agent-based approach as an effective and 

flexible model for pricing any type of service, and to 

develop the agent-based approach for the wireless 

dynamic pricing problem (with focus on data services), 

as a detailed case study. Agent-based systems have 

been introduced in financial markets [1], and recently 

in economics [2]. The main feature of the agent-based 

approach in wireless pricing is that it treats each 

subscriber separately and models how pricing will 

affect his demand. Moreover, it accommodates the 

existence of several rate plans from the same operator 

as well as rate plans from different operators. This way 

it manages to account for the heterogeneity that exists 

in real situations. It will also exhibit how this 

heterogeneity manifests itself globally in aggregate 

behavior. 

We propose here a dynamic pricing methodology 

that is based on considering several candidate rate 

plans and optimize their parameters in order to 

maximize the operator’s revenue. Each rate plan has 

aspects of dynamic pricing. This means that we have a 

variable pricing that is based on traffic, capacity, time 

of the day and other factors. The goal here is not to 

propose specific rate plans per se, but to present a 

whole framework for designing and testing rate plans. 

In other words we propose a complete and large scale 

simulation testbed that can be used to accurately and in 

flexible manner simulate the users’ actions, their 

response to rate plans, and to price changes, and the 

effect on QoS, and aggregate traffic. 

The dynamic pricing is framed as premiums and 

discounts over the prevailing rate, in order to make it 

more palatable to the operators, as it allows them to 

relate the proposed prices to their own set reference 

price. Embedded in this proposed system is an agent-

based model that simulates the behavior of the users, 

including the initiation of data service usage, the 

dynamics of the traffic generated for each session, the 

effect of pricing on the traffic generated by the user and 

the long term effect of pricing in selecting the rate 

plan. This simulation yields an estimate of the revenue 

and the load and its output will therefore directly 

influence the pricing parameters and function. 

To test the proposed model, we consider a number 

of rate plans as examples of static and dynamically 

priced plans, and optimize their parameters in an 

attempt to maximize the revenue subject to QoS 

constraints. We limit our study to data services, and do 

not consider voice, as data services is the most 

pressing issue concerning bandwidth. These rate plans 

are: 

Rate plan 1: Dynamic Pricing for a Fixed Internet 

Usage  

Assume that the mobile operator provides a 

standard monthly flat rate  𝑃𝑟𝑒𝑓  for a certain bundle. 

We propose an alternative adjusted dynamic rate plan 

as follows. The price ranges from 𝑃𝑟𝑒𝑓 −𝑤  to 

𝑃𝑟𝑒𝑓 +𝑤 where 𝑤is a fixed predetermined value that 

limits the minimum and maximum price values. So the 

customer is guaranteed not to pay more than 𝑃𝑟𝑒𝑓 +𝑤 

and will not pay less than𝑃𝑟𝑒𝑓 −𝑤 . The exact paid 

price will be determined dynamically according to 

peak/off-peak hours and cell load (measured by both 

the number of online users in the cell, and the total 

bandwidth they consume). 

Rate plan 2: Fixed Price for Dynamic Internet Usage 

This rate plan is simply the dual of the above rate 

plan. As some customers prefer to pay a fixed amount 

monthly, we propose a rate plan with a fixed price 

𝑃𝑟𝑒𝑓  while the usage amount (in Mbytes or GBytes) 

Uref  ranges from 𝑈𝑟𝑒𝑓 −∆ to 𝑈𝑟𝑒𝑓 +∆where ∆ is a 

fixed predetermined value that limits the minimum and 

maximum usage amount. 
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2 

 

Rate plan 3: Floating Price 

In this rate plan, the price is dynamically 

determined according to peak/off-peak hours and the 

cell load. However, unlike the first rate plan there are 

no minimum or maximum bounds on the paid price. 

So, if a user did not use the internet, he/she will pay 

nothing (and vice versa, extensive use leads to a large 

bill). On the other hand, the price itself is not limitless. 

There are built-in pricing bounds that guarantee that it 

does not diverge much from the reference price. 

System Overview  

We collect the data from 21 users using an Android 

mobile application, that we have developed, that stores 

and retrieves internet data usage (3G). The average 

collected data length is 72 days per user. 

In order to be able to simulate the users’ actions, 

we have a first stage, where we learn the dynamics of 

the users’ data services usage. We assume that the 

learned dynamics of the 21 users will provide a diverse 

set of usage patterns hopefully similar to what is 

observed in a typical cell. There are two main aspects 

about the usage that we have to learn from the 

gathered users’ data. For each period (for example a 

five minute or a ten minute period) we need to predict 

whether the user is online or not (i.e. whether the user 

is using some data service or not). The other aspect is 

to predict how much traffic is he using in the period 

(typically in Mbytes). To obtain these dynamics we 

develop a classifier for the former aspect, and a time 

series forecasting model for the latter aspect. Once 

these two models are estimated for each user, we can 

generate more data. Moreover, we can generate 

additional hypothetical users that follow dynamics 

similar to the existing users. Also, one can anticipate 

changes in the dynamics in response to changes in the 

pricing. Limiting the use to the original 21 users’ real 

data would be too rigid and therefore not flexible 

enough to achieve all these goals.  

We developed one classifier for each user that 

estimates his/her probability of being online or in a 

session using Support Vector Machines (SVM) 

classifier [3].We then developed one time series 

forecasting model for each user that forecasts the 

usage amount in Megabytes (MB) for future time 

periods using Autoregressive (AR) [4] model with a 

number of lags determined using Bayesian 

Information Criterion (BIC).  

𝑦𝑡 = 𝜑𝑘𝑦𝑡−𝑘

𝐿

𝑘=1

+ 𝜀𝑡  

where 𝑦𝑡  is the forecasted demand usage, 𝐿 is number 

of lags and 𝜀𝑡  is a white noise term.  

      How the price varies dynamically is designed as 

follows. We consider that the price should be a 

function of the remaining cell capacity, the time of day 

and the immediate preceding rate of usage. This will 

make the price as an effective control tool for reigning 

in congestion and for shifting demand towards low 

usage periods. We consider certain price multipliers 

that vary around 1 and provide a varying 

discount/premium over the reference price (which is 

typically taken as the prevailing rate). Each multiplier 

is a function (typically linear or piecewise linear) of 

one of the aforementioned factors. These multipliers 

will be multiplied by the reference price to obtain the 

final price. They vary around the value of 1, where a 

value that is lower than 1 corresponds to a discount 

with respect to the reference price (for example, 0.9 

means that the price is 10% lower) while a value that 

is higher than 1 represents a premium over the 

reference  

The multipliers considered are: time of the day 

multiplier which has higher values for peak hours, cell 

capacity multiplier which is directly proportional to 

cell load, number of active users in cell multiplier 

which is directly proportional to the number of users 

and average usage per session multiplier which 

rewards a user for uniform usage over long period and 

penalizes him/her for higher usage in a concentrated 

period (to avoid network jamming). 

An meta-heuristic optimization algorithm called 

Covariance Matrix Adaption Evolution Strategy 

(CMA-ES) [5,6] is applied to optimize the parameters 

defining the functional form of the multipliers such 

that the operator’s revenue is maximized. Any price 

modification will influence the demand via the price 

elasticity. An x % change in demand is translated into 

an x % change in generated traffic, which in turn will 

influence the revenue. The optimization algorithm will 

keep probing the space intelligently until reaching the 

optimal solution. The optimization is subject to strict a 

constraint on the QoS in the form of caps on the 

blocking probability. Thus, any solution leading to a 

violation of the blocking probability will be discarded. 

A training period is used to determine customers’ 

choices of the competing rate plans. We define a 

utility function for the rate plan evaluation, in the form 

of a proposed function of the average monthly 

payment, and the monthly payment variability 

experienced for each customer during the training 

period. A softmax function is applied to the different 

rate plans’ utility to determine the probability of a 

customer to select a particular rate plan. Figure 1 

shows a block diagram of the proposed system. 
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Figure 1: The block diagram of the dynamic pricing 

model. 

 

Results 

We applied two simulation runs for 50 generated 

users (whose dynamics are extracted from the 21 

available real users’ data). In the first run, only a static 

plan (fixed-price but with a cap on total usage) of one 

of the Egyptian operators was offered to the users. 

This is considered the baseline run, over which we 

would like to improve by developing new rate plans, 

and tuning their parameters. In the second run, both 

the static plan and our proposed dynamic plans were 

offered. The simulations were done for 3-months 

period, after the training period at which the user 

recognizes his average payment and subsequently 

makes a rate choice. (In reality the customer does not 

necessarily do that, because he knows his own usage, 

and can effectively predict his payment for each 

possible rate plan.) Our proposed model yields an 

increase of the total revenue by about 66% compared 

to that of the static plan. So the proposed plans in 

conjunction with existing rate plans achieved both 

acceptable QoS, and improved utility to the users and 

higher operator’s revenue. 
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∗ Abstract

The recent availability of high-definition
traffic flow data from sources, such as Tom-
Tom, allows for empirical investigation into
traffic prediction. Here, we examine interstates
in the Boston area to evaluate the predictabil-
ity of travel times over a route throughout the
day. The resulting distributions exemplify the
fluctuations in travel times as a result of tem-
porally dynamic traffic conditions. Examining
the shape of these distributions over the course
of the day shows us the difficulty of predict-
ing travel times accurately with other means.
We compare these empirical averages to travel
times resulting from iterated traffic assignment
using mobile phone data. Our results expose
natural fluctuations in travel time statistics,
while examining the use of mobile phone data
for aggregate traffic assignment in conjunction
with traffic feeds to move beyond only solving
an optimization problem, such as iterated traf-
fic assignment. Our results suggest that more
realistic statistical models for urban traffic net-
works might be generated by including empir-
ical traffic data into the traffic assignment pro-
cess; this would in turn allow for improved mo-
bility solutions and traffic applications.

Flow dynamics on networks are a thoroughly investigated
topic as a theoretical problem [1,2] and in several applica-
tions, such as airway transportation [3–5] and social sys-
tems [6–8]. In particular, the effects of traffic congestion
across a road network presents interesting properties with
an increasing number of methods for modeling such phe-
nomenon [9–11]. The discrepancies among these models
may be attributable to the sparsity of empirical data for
calibration [12].

A common goal for the transportation community
is to provide methods that produce efficient routes for
commuters. Currently, this task requires approximating
system-wide road conditions by assigning road demand
from aggregate commuter origin-destination data [13–

15]. Some methods for simulating population level move-
ment based on spatially localized information include
gravity models [16–18] and the radiation model [11, 19].
However, the trend of using increasingly available mobile
phone data to approximate population levels by reception
area is an appealing alternative because of the temporal
resolution and spatial coverage [12, 20]. We can estimate
road demand through methods, such as iterated traffic as-
signment, using data to approximate population level tran-
sitions between regions, such as commuting from residen-
tial to commercial areas.

High-definition traffic flow and traffic incident data
made available by TomTom [21] is a promising source of
empirical traffic information. By enhancing official gov-
ernment traffic reports with data from 80 million anony-
mous mobile phone users and 1.6 million TomTom device
users, the TomTom traffic feed provides accurate glimpses
of congestion on the road network. Note that the TomTom
feed does not allow us to track individual trajectories, but
is a suitable tool for calibrating traffic assignment meth-
ods as it allows us to verify flow distributions across the
road network.

Previous studies have revealed the non-linear behav-
iors inherent in traffic flow as the percolation of shock
waves in continuous models [22–24] and in agent-based
investigations [25, 26]. This non-linearity may cause dif-
ficulty in predicting travel times for individual routes.
However, empirical investigation into the deviations of
route travel times as a function of the time of the day are
lacking due to the sparsity of relevant data. This issue is
in part responsible for the current interest in the traffic as-
signment problem.

While empirical data feeds are sufficient to validate
traffic assignment, these feeds are often too sparse or un-
available for particular U.S. cities to replace current traffic
assignment methods [27]. Our method uses census tract
commuting data from the U.S. Department of Transporta-
tion Federal Highway Administration [28] and demand
estimations through real-time mobile phone data [12, 20].
We implement an iterated traffic assignment strategy fol-

∗corresponding author: mrfrank@mit.edu
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A B

Figure 1: A snapshot of traffic flow on the Boston road network. (A) We plot locations of Boston roads in the OpenLR
dataset in blue. Yellow road segments indicate areas where traffic flow may be observed with the TomTom high-
definition traffic flow data. (B) Projected volume-over-capacity (voc) using iterated traffic assignment from mobile
phone data during a morning commute with purple indicating voc ≈ 2.0 and red indicating voc ≈ 5.0 .

lowing the methods explained in [20] using the OpenLR
road network [29]. This method allows for realistic in-
dividual routing by distributing aggregate traffic across a
road network. The output of this algorithm includes an es-
timation of traffic flow on each road in the road network,
which can be validated against the TomTom flow data.
Figure 1 shows example predicted areas of congestion us-
ing our iterated traffic assignment method. Furthermore,
integrating data from traffic feeds may allow researchers
to move beyond relying on only an optimization problem
for providing accurate traffic assignment.

In conclusion, we show the natural variation in route
travel times over the course of a week day using em-
pirical TomTom data for the Boston area collected over
two months. This result exposes the innate difficulties in
producing accurate travel time predictions. Despite this,
we implement a traffic assignment strategy using mobile
phone data to successfully produce realistic travel predic-
tions for interstates in the Boston area when compared to
the empirical travel times. This promising result high-
lights the predictive power of traffic assignment methods
using aggregate commuter data through mobile phones
in the absence of sparsely available traffic feeds. Fur-
thermore, our results suggest that more realistic statistical
models of the urban traffic network are obtainable by in-
tegrating empirical traffic data into the traffic assignment
process. Such models could be used to inform better mo-
bility solutions and traffic applications.
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& Toroczkai, Z. ”Predicting commuter flows in spatial net-
works using a radiation model based on temporal ranges”,
Nature Communications, in press, 2014.

[12] Jiang, S., Via-Arias, L., Zegras, C., Ferreira, J., &
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Analysis and Modeling of
Mobile Data Traffic in Mexico City

Eduardo Mucelli Rezende Oliveira�,×, Aline Carneiro Viana×, K. P. Naveen×, and Carlos Sarraute?

� École Polytechnique, France × INRIA, France ? Grandata Labs, Argentina

I. INTRODUCTION

The 3G cellular networks are struggling with the recent boost
of mobile data consumption led by the pervasive era. The steady
growth of smartphones, the very rapid evolution of services
and their usage is accentuated in metropolitan scenarios due
to the high urbanization and concentration of mobile users. In
this context, understanding mobile data traffic demands per
user is crucial for the evaluation of data offloading solutions
designed to alleviate cellular networks [1].

The pervasive era also brought new facilities: currently smart-
phones provide the best means of gathering users information
about content consumption behavior on a large scale. In this
context, the literature is rich in work studying and modeling
users mobility, but little is publicly known about users content
consumption patterns.

Our contributions in this work are twofold: First, our analyses
provide a precise characterization of individual subscribers
traffic behavior clustered by their usage pattern, instead of
a network-wide data traffic view [2]. Second, we provide a
traffic generator that synthetically, still consistently, reproduces
real traffic demands. A synthetic traffic generator has positive
implications on network resource allocation planning and
testing, or hotspot deployment. Moreover, the synthetic traffic
carries no direct personal information from the original users,
thus greatly reducing privacy issues.

II. DATASET ANALYSIS

Our study is performed on an anonymized dataset collected at
the core of a major 3G network of Mexico’s capital, consisting
of data traffic associated with 6.8 million subscribers. The
data includes information about subscribers’ sessions that took
place from 1st July to 31st October, 2013. The studied dataset
contains more than 1.05 billion sessions and each of them
has the following fields: (1) amount of upload and download
volumes (in kilobytes) during the session; (2) session duration
in seconds; and (3) timestamp indicating when the session
starts.

Due to the routinary behavior of people [1] and the large
scale of the dataset, it suffices to study a subset of the whole
dataset in order to capture the daily behavior of subscribers. We
have selected one week to more deeply assess the subscribers’
behavior, which spans from 25th August to 31st August 2013
and contains information of about 2.8 million smartphone
devices and activity that totalizes 104 million sessions.

In the following, we start our analysis by studying the
behavior of mobile subscribers in terms of traffic they generate
and their activity on the temporal scale.
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Fig. 1. (a) Number of subscribers and sessions on the whole dataset. (b) CDF
of number of days in which subscribers generate traffic.

A. Traffic Dynamics
Fig. 1(a) shows the total number of subscribers and the total

number of sessions from the whole dataset. Both parameters are
highly correlated (Spearman’s correlation is 98%). On average,
the number of active subscribers is higher during the weekdays
than during the weekend (also observed in [3]).

Fig. 1(b) shows the CDF of the number of active days of the
subscribers within the week. Additionally, we observed that
most subscribers generate traffic on few hours during the day.

Furthermore, our analysis shows that uploaded and down-
loaded session volumes are similar and correlated (Spearmans’s
correlation is 88%). Owing to this high correlation, in our
evaluation and traffic modeling, we take into consideration the
total volume per session.

B. Temporal Dynamics
Some hours are more active than others when it comes

to subscribers daily activities. Two features are important to
highlight: (1) there is a repetitive behavior during different
days at the same hours; (2) there are peak and non-peak hours
in traffic demands.

Indeed, Fig. 2(a) shows the hourly dynamics of the number
of sessions during the week (for a complete evaluation of other
parameters, refer to [4]). We can see a clear gap on the average
number of sessions from 4am to 8am.

Our analysis of all parameters shows a high similarity
on number of sessions, volume of traffic, and inter-arrival
time, when compared day-wise (even comparing weekdays
and weekends). Fig. 2(b) shows the per-parameter average
Relative Standard Deviation (RSD), which considers the hour-
wise variation from all 7 days. We have also calculated the
maximum RSD of the parameters when compared day-wise.
The results show that the parameters from the same hours
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Fig. 2. (a) Average number of sessions per user during the week. (b) Relative
Standard Deviation per parameter.

on different days present less variability than the parameters
within the same day on different hours.

The similarity of the temporal activity patterns among
different days of the week allows us to select one day to perform
our extensive per-hour analysis and distinguish different profiles
of users.

III. SUBSCRIBER PROFILING METHODOLOGY

To describe the behavior of subscribers, we group them into
a limited number of profiles, generated according to two traffic
parameters: traffic demands (i.e., volume of traffic) and activity
behavior (i.e., number of sessions). We detail below our profile
definition procedure.

A. Similarity Computation

Our development can hold in general for any time interval
D chosen from the week. Let S be the set of all subscribers
that generate some traffic during D, and S′ ⊆ S be a randomly
selected sample of subscribers. Our objective is to partition the
subscribers in S′ into a set of clusters P, such that subscribers
belonging to the same cluster are “similar” in terms of traffic
demands. We use the Euclidean distance to measure the
similarity between two subscribers [5].

Each subscriber i ∈ S can be effectively represented as a
sequence of sessions generated by i. Let tik denote the time
instant at which his k-th session begins, and let vik be the
volume of traffic (both upload and download) generated.

To reduce the memory and processing time required, we
divide D into time slots of length T (we use T = 1 hour).
Let τ it denote the set of all sessions starting within time slot t.
Now, the volume of traffic generated by subscriber i, in time
slot t, is given by V it =

∑
k∈τ i

t
vik. Similarly, we define the

number of sessions N i
t .

Using the above expressions, the total volume and the total
number of sessions generated by subscriber i during D are
ϑi =

∑
t∈D V

i
t and ηi =

∑
t∈DN

i
t . Finally, we define the

traffic volume similarity between two subscribers i and j as
the difference wϑij = ‖ϑi − ϑj‖, and the number of sessions
similarity as wηij = ‖ηi − ηj‖.

Using the subscribers in S′ as the vertices, and using either
wϑi,j or wηi,j as the edge weights, we obtain a complete graph
G(S′,E), which is given as input to our clustering algorithm.

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

105.5

106

106.5

107

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

Vo
lu

m
e 

pe
r 

su
bs

cr
ib

er
 (

K
B

)

● HF HO LF LO

(a)

●

●
● ●

●

●

●

●

●

● ●

● ●

●
●

●

● ●

●

●

●

●

●

105.5

106

106.5

107

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

Vo
lu

m
e 

pe
r 

sy
nt

he
tic

 s
ub

sc
rib

er
 (

K
B

)

● HF HO LF LO

(b)

Fig. 3. Volume of traffic per class per hour (a) for real and (b) for synthetic
subscribers.

B. Subscriber Clustering and Classification

Instead of a-priori fixing a value for the number of profiles
(i.e., clusters) |P|, our goal is to obtain from the data the
number of profiles which best represent the subscribers’ traffic
activities. For this purpose, we use the UPGMA hierarchical
clustering algorithm [6], that iteratively aggregates vertices
from the similarity graph G(S′,E). To find the best number
of clusters, we have implemented and used 23 stopping rules
(see [4] for a complete list).

Profiling occurs then in four stages: (1) building a similarity
graph with S′ subscribers, (2) hierarchically clustering it using
a similarity metric, (3) determining the best number of clusters
|P|, and (4) classifying the remaining subscribers in S− S′.

These four stages are performed in two rounds. In the first
round, the graph G(S′,E) weighted according to the traffic
volume similarity wϑij is used. According to stopping criteria
results, |P| = 2 weighted subgraphs G1 and G2 are created. In
the second round, G1 and G2 are weighted according to the
number of sessions similarity wηij . Two new clusters are found
for G1 and G2, totalizing four subscribers profiles.

C. Subscriber Profiles

To obtain the profiles for our dataset, we set D as 27th of
August 2013, which contains information of about 1.5 million
smartphone devices, and randomly sampled |S′| = 10000
subscribers. Our profiling methodology resulted in four profiles,
named as follows: Light Occasional (LO), Light Frequent (LF),
Heavy Occasional (HO) and Heavy Frequent (HF). Table I
shows the characteristics of each of the profiles.

TABLE I
CHARACTERISTICS OF THE RESULTING PROFILES

Light Heavy

Volume 29 KB to 20 GB 21 GB to 625 GB
Subscribers 1489242 27659

Occasional Frequent Occasional Frequent

Sessions 1 to 278 279 to 8737 1 to 278 279 to 8737
Subscribers 1486496 2746 27593 66

In Fig. 3(a), we show the dynamics of the volume of traffic
per subscribers class per hour, calculated using V it . The error
bars correspond to a 95% confidence interval. We can see that
our methodology well separates the profiles. For each curve in
this plot, we also show the respective mean values (horizontal
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lines). We classify, for each profile of subscribers and for each
parameter, the hours above the mean as peak hours, and hours
below the mean as non-peak hours.

IV. MEASUREMENT-DRIVEN TRAFFIC MODELING

The goal of the traffic model is to generate synthetic sub-
scribers, whose usage pattern is consistent with the observations
made about the real subscribers in the previous section.

A. Fitting Empirical Distributions

Using the original subscribers’ data, we first study for each
profile in peak and non-peak hour, the empirical distribution
functions (i.e., CDF) of the traffic parameters. Detailed CDFs
analyses are reported in [4].

Once the CDFs are obtained, we estimate the set of distri-
butions that best fit them. More specifically, when considering
the volume of traffic and the inter-arrival time (consisting of
continuous values), the Kolmogorov-Smirnov statistic test is
used. The test estimates the parameters for a set of continuous
distributions (namely, Log-normal, Gamma, Weibull, Logis,
and Exponential) that best fit the corresponding empirical
distribution. Similarly, when considering the number of sessions
(consisting of discrete values), the Chi-squared statistic test is
used to estimate the best fitting parameters for a set of discrete
distributions (Negative binomial, Geometric, and Poisson). In
both cases, with the results of the fitting tests, we select the
distribution function that best fits each corresponding CDF.

B. Synthetic Subscriber Generation

Generating a synthetic subscriber will first require us to
generate a profile type (HO, HF, LO or LF) for the subscriber.
Profile types are assigned randomly, based on the distribution
of profiles population observed in the real data (see Table I).

After obtaining the profile type, for a given hour t, we
randomly sample values for each traffic parameter according to
the corresponding fitted distribution functions. That is, for each
subscriber i and time slot t, we sample a number of sessions
N i
t , mean inter-arrival time IAT it , and average session volume

V it from the appropriate (fitted) distributions. The volume per
session vik (for k ∈ τ it ) and initial timestamp of each session
are computed accordingly. By varying t over the 24 hours in
a day, we obtain a synthetic subscriber traffic for one day.

C. Synthetic Traffic Model Evaluation

In order to evaluate our traffic modeling, we generate a
synthetic dataset and compare it with the original dataset.
Towards this goal, we generate a set R of synthetic subscribers,
with |R| = |S|, and one day of traffic, denoted as D′.

Let pϑE denote the PDF (Probability Distribution Function)
of the total volume generated per subscriber in day E. Fig. 4(a)
shows the CDFs corresponding to pϑD and pϑD′ . We can observe
an almost complete overlap of the two CDFs due to a high
similarity between the real trace and the synthetic trace.

Furthermore, to measure the similarity between datasets,
we use the Bhattacharyya distance d (see [3], [7]). Let D∗
denote the set of days contained in the dataset, excluding
the original day D. Fig. 4(b) shows the distances d (pD, pE)
between D and the remaining days E ∈ D∗, and as horizontal
line the distance d (pD, pD′), per parameter. We verified that the
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Fig. 4. (a) CDF of the total volume per session for real and synthetic
subscribers (b) Per-parameter Bhattacharyya distances between original and
synthetic trace, and between original trace in D and other days from the
original trace.

distance d (pD, pD′) is within the 95% confidence interval of
the distances d (pD, pE) for E ∈ D∗, for all three parameters.

Finally, we applied the profiling methodology on the syn-
thetic users. Fig. 3(b) depicts the per-class behavior for the
volume of traffic per session for the classified synthetic users.
This result is coherent with the behavior from the original trace
presented in Fig. 3(a).

V. CONCLUSIONS AND NEXT STEPS

In this paper we have first presented a characterization of a
4-month dataset that contains more than 1.05 billion session
connections from about 6.8 million smartphone users. Moreover,
we propose a framework that automatically classifies those users
by their traffic demands into a limited number of profiles. Our
approach takes advantage of repetitive user behavior due to their
daily routines. Furthermore, we have calculated distributions
that describe their traffic demands into peak and non-peak hours.
Finally, from these distributions we create a traffic generator
and evaluate the synthetic trace it generates. Our results show
that the synthetic trace presents a consistent behavior when
compared to original dataset.

As future work, we aim to investigate models to describe
sessions’ transfer rate and duration. Additionally, we intend to
apply and evaluate our traffic generator on different problems
such as network planning.
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1. INTRODUCTION
Over the past decade, mobile phones have become preva-

lent in all parts of the world, across all demographic back-
grounds. Mobile phones are used by men and women across
a wide age range in both developed and developing countries.
Consequently, they have become one of the most important
mechanisms for social interaction within a population, mak-
ing them an increasingly important source of information to
understand human demographics and human behaviour.

In this work we combine two sources of information: com-
munication logs from a major mobile operator in Mexico,
and information on the demographics of a subset of the
users population. This allows us to perform an observa-
tional study of mobile phone usage, differentiated by age
groups categories [1, 2]. This study is interesting in its own
right, since it provides knowledge on the structure and de-
mographics of the mobile phone market in Mexico.

We then tackle the problem of inferring the age group for
all users in the network. We present here an exclusively
graph based inference method relying solely on the topolog-
ical structure of the mobile network, together with a topo-
logical analysis of the performance of the algorithm. The
equations for our algorithm can be described as a diffusion
process with two added properties: (i) memory of its initial
state, and (ii) the information is propagated as a probability
vector for each node attribute (instead of the value of the
attribute itself). Our algorithm can successfully infer differ-
ent age groups within the network population given known
values for a subset of nodes (seed nodes). Most interestingly,
we show that by carefully analysing the topological relation-
ships between correctly predicted nodes and the seed nodes,
we can characterize particular subsets of nodes for which our
inference method has significantly higher accuracy.

2. DATA SET
The dataset used in this work consists of cell phone calls

and SMS (short message service) records (CDRs) collected
over a three month period. We aggregate this information
into an edge list (x, y, wx,y) where wx,y is a boolean value
indicating whether users x and y have communicated at least
once within the three month period. This edge list represent
our mobile phone graph G = 〈N , E〉 where N denotes the set
of nodes (users) and E the set of communication links. Our
graph has about 70 million nodes and 250 million edges. We
are also given the age of a subset of 500,000 nodes, which
we use as a ground truth (denoted NGT ).

3. AGE HOMOPHILY IN THE COMMUNI-
CATION NETWORK

Graph based methods like the one we present in this work
rely strongly on the ability of the graph topology to capture
correlations between the node attributes we are aiming to
predict. A most fundamental structure is that of correla-
tions between a node’s attribute and that of its neighbors.
Figure 1(a) shows the correlation matrix C where Ci,j is the
number of links between users of age i and age j for the
nodes in the ground truth NGT . Though we can observe
some smaller off diagonal peaks, we can see that it is most
strongly peaked along the diagonal, showing that users are
much more likely to communicate with users of their same
age.

To account for a population density bias, we compute a
surrogate correlation matrix R as the expected number of
edges between ages i and j under the null hypothesis of in-
dependence. This matrix represents a graph with the same
nodes as the original, but with random edges (while main-
taining the same number of edges as the original). Both C
and R are represented with a logarithmic color scale. If we
subtract the logarithm of R to the logarithm of the orig-
inal matrix C, we can isolate the “social effect” (i.e. ho-
mophily) from the pure random connections, as can be seen
in Fig. 1(b).

4. REACTION-DIFFUSION ALGORITHM
For each node x in G we define an initial state probability

vector gx,0 ∈ R4 representing the initial probability of the
nodes age belonging to one of d = 4 age categories: below
24, 25 to 34, 35 to 50, and over 50 years old. More precisely,
each component of gx,0 is given by

(gx,0)i =

{
δi,a(x) if x ∈ NS

1/d if x 6∈ NS

(1)

where δi,a(x) is the Kronecker delta function, a(x) the age
category assigned to each seed node x, and NS ⊂ NGT are
the seed nodes, whose known age attribute is diffused across
the network. For non seed nodes, equal probabilities are
assigned to each category. These probability vectors are the
set of initial conditions for the algorithm.

The evolution equations for the probability vectors g are
then as follows:

gx,t = (1− λ) gx,0 + λ

∑
x∼y gy,t−1

|{y : x ∼ y}| (2)

where x ∼ y is the set of x’s neighbours and λ ∈ [0, 1] defines
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(a) Communications matrix C.

(b) Difference between C and R.

Figure 1: Age homophily plots showing (a) the com-
munications matrix C and (b) the difference between
C and the surrogate random links matrix R.

the relative importance of each of the two terms. It is not
hard to show [1] that the above equation can be rewritten as
a discrete reaction diffusion equation on the mobile phone
graph given by

gat − gat−1 = (1− λ)(ga0 − gat−1)− λLgat−1 (3)

where L is a normalized graph Laplacian. At each iteration,
each gx,t in (2) updates its state as a result of its initial state
and the mean field resulting from the probability vector of
its neighbors.

Preserving Age Demographics
A salient feature of our algorithm is that the demographic
information being spread is not the age group itself, but a
probability vector for each age group. In each iteration, the
algorithm does not collapse the information in each node to
a preferred value; instead it allows the system to evolve as
a probability state over the network, which allows us to im-
pose further external constraints on the algorithms results.
For instance, after the last iteration, we can select the age
category of each node based on the final probability state of

each node’s category, but constrained so that the age group
distribution for the whole network be that of the ground
truth set NGT as was described in [1, 2].

5. RESULTS
In this section we first present the results for the predictive

power of the reaction-diffusion algorithm over the whole net-
work G. The overall performance for the entire validation set
(20% of NGT ) was 46.6%, and we note that a performance
based on random guessing without prior information would
result in an expected performance of 25%, or an expected
performance of ∼ 36% if we set all nodes age group to the
most probable category (35−50). We now take a closer look
and see how the performance can increase or decrease as we
select particular subsets of nodes.

Topological Metrics and Performance
We first look at how our algorithm performs for different
subsets of N selected according to three topological metrics:
(i) number of seeds in the node’s neighborhood, (ii) distance
of node to NS and (iii) node’s degree.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
seeds in neighborhood

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hits%
population%

Figure 2: Performance and population as function
of SIN (seeds in neighborhood).

Figure 2 plots the performance (hits) of the algorithm as
a function of the number of seeds in the node’s neighbor-
hood (SIN ). The algorithm performs worse for nodes with
no seeds in the immediate neighborhood with hits = 41.5%,
steadily rising as the amount of seeds increase with a per-
formance of hits = 66% for nodes with 4 seeds in their
neighbourhood. We also see that the population of nodes
decreases exponentially with the amount of seeds in their
neighbourhood.

Next we examine how the algorithm performs for nodes
in G that are at a given distance to the seed set (DTS). In
Fig. 3 we plot the population size of nodes as a function
of their DTS. The most frequent distance to the nearest
seed is 2, and almost all nodes are at distance less than
4. This implies that after four iterations of the algorithm,
the seeds information have spread to most of the nodes in G.
This figure also shows that the performance of the algorithm
decreases as the distance of a node to NS increases.

In Fig. 4 we see that the performance of the algorithm is
lowest for nodes with small degree and gradually increases
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
distance to seed
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hits%
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Figure 3: Performance and population as function
of DTS (distance to seeds set).

100 101 102
degree

0.0

0.1

0.2
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0.4

0.5

0.6
hits%
population%

Figure 4: Performance and node population as func-
tion of the nodes degree.

as the degree increases reaching a plateau for nodes with
d(x) > 10.

Probability Vector Information
An orthogonal approach to find an optimal subset of nodes
(where our algorithm works best) is to exploit the infor-
mation in the probability vector for the age group on each
node. Namely, we examine the performance of the reaction-
diffusion algorithm as we restrict our analysis to nodes whose
selected category satisfies a minimal threshold value τ in its
probability vector.

In Fig. 5 we observe a monotonic increase in the perfor-
mance as the threshold is increased but, as expected there
is a monotonic decrease of the validation set. We note that
for τ = 0.5 the performance increased to 72% with 3,492
out of the 143,240 (2.4%) of the validation nodes remaining.
The performance of the algorithm increases to ∼ 81% for
τ = 0.55 but the validation set remaining sharply decreased
to only 201 nodes (0.1%).

0.25 0.30 0.35 0.40 0.45 0.50 0.55
τ

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

hi
ts

% hits%
validations

0

20000

40000

60000

80000

100000

120000
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160000

va
li

da
ti

on
s

Figure 5: Performance as function of τ .

6. CONCLUSIONS
In this work we have presented a novel algorithm that can

harness the bare bones topology of mobile phone networks to
infer with significant accuracy the age group of the network’s
users. We show that an important reason for the success of
the algorithm is the strong age homophily among neighbours
in the network as evidenced by our observational study of
the ground truth sample GGT .

We have shown the importance of understanding nodes
topological properties, in particular their relation to the seed
nodes, in order to fine grain our expectation of correctly clas-
sifying the nodes. Though we have carried out this analysis
for a specific network, we believe this approach can be useful
to study generic networks where node attribute correlations
are present.

As future work, one direction that we are investigating
is how to improve the graph based inference approach pre-
sented here by appropriately combining it with classical ma-
chine learning techniques based on node features [2]. We are
also interested in applying our methodology to predict vari-
ables related to the users’ spending behavior. In [3] the au-
thors show correlations between social features and spending
behavior for a small population. We are currently tackling
the problem of predicting spending behavior characteristics
on the scale of millions of individuals.
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The City Pulse of Buenos Aires
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I. INTRODUCTION

Cell phone technology generates massive amounts of data.
Although this data has been gathered for billing and logging
purposes, today it has a much higher value, because its volume
makes it very useful for big data analyses. In this project, we
analyse the viability of using cell phone records to lower the
cost of urban and transportation planning, in particular, to find
out how people travel in a specific city (in this case, Buenos
Aires, in Argentina). We use cell phones data to estimate
the distribution of the population in the city using different
periods of time. We compare those results with traditional
methods (urban polling) using data from Buenos Aires origin-
destination surveys. Traditional polling methods have a much
smaller sample, in the order of tens of thousands (or even less
for smaller cities), to maintain reasonable costs. Furthermore,
these studies are performed at most once per decade, in the best
cases, in Argentina and many other countries. Our objective
is to prove that new methods based on cell phone data are
reliable, and can be used indirectly to keep a real-time track of
the flow of people among different parts of a city. We also go
further to explore new possibilities opened by these methods.

II. MOBILE DATA SOURCE

We applied our methodology to Buenos Aires city, the capital
of Argentina, which has 2,890,151 inhabitants [1] and is the
main political, financial and cultural center of the country.
Buenos Aires city is formally divided in 48 neighborhoods,
which are grouped for political and administrative purposes in
15 communes.

We have a dataset of geolocalized CDR (call detail records),
from which we examine the mobility patterns of mobile phone
users. The high penetration of cell phone technology in the city
allows us to estimate the mobility patterns of all the inhabitants
from this data.

Our dataset has about 4.95 million mobile phone users (1,000
times the number of people in the Buenos Aires survey [2]); it
also contains more than 200 million call records generated by
these users during a period of five months (from November
1st, 2011 to March 30th, 2012). Each record contains the
origin (caller), destination (callee), timestamp, duration of the
call and antenna used to connect. In addition, we have the
geolocalization of the antennas. We used that information to
map the antennas to a certain commune, and we used the map
[call→antenna] as dataset of geolocated calls.

III. METHODOLOGY

In this section we explain the methodology we used to adapt
the Call Detail Records (CDRs) to our objective.

The first step of our method generates, for each particular
user, a Location Distribution Matrix (LDM) that shows the
probability of the user being in a commune c at a given time
t of the week. The second step defines a criteria to consider
only users whose LDMs give us enough information about
their mobility patterns. The last step scales our sample using
the population values from the census data.

A. Generation of Location Distribution Matrices
We separated a typical week into four day groups and four

hour groups, as shown in Table I.

TABLE I
DAY GROUPS AND HOUR GROUPS USED IN OUR ANALYSIS

Day groups

Monday to Thursday
Friday
Saturday
Sunday

Hour groups

Morning 5am - 11am
Noon 11am - 3pm
Afternoon 3pm - 8pm
Night 8pm - 5am (of next day)

This selection is based on the fact that Monday to Thursday
are typical working days, Fridays show different mobility
patterns (specially at night), and weekends present a completely
different pattern.

The hour group selection corresponds to an analysis realized
with the data of [2], from which we determined the peaks and
valleys of mobility, for a typical working day in the city.

Let C be the set of communes and Ru,d,h,c the number
of calls made by user u on day group d, hour group h, in
commune c. The proportion of calls (i.e., the cell values of
the LDM) that a certain user u made in commune c during a
combination of day group d and hour group h is

Pu,d,h,c =
Ru,d,h,c∑

c′∈C Ru,d,h,c′

or 0 if the denominator is zero. The matrix Pu is the Location
Distribution Matrix of user u.

B. Criteria for Filtering Users
We filter the users that don’t provide enough information on

their location; more precisely we only take into account the
users that have enough calls in every one of the 16 day/hour
groups. That is, the user u is kept if

∑

c′∈C
Ru,d,h,c′ ≥ τ
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for any combination of d and h, given a threshold τ (in our
study τ = 1). After filtering, we obtain a set of 73,000 users
which we denote U .

C. Scaling up to Census Population

First, we determine the home commune Hu for every user
u ∈ U . We consider that a user is at home on weekdays, at
night:

Hu = argmax
c∈C

Ru,weekday,night,c

In case of a tie, we decide randomly. We registered only 395
ties among the set of valid users U (0.56% of the cases).

With that information, we extend our predictions using the
census data [1]. The scaling factor Fc for commune c is:

Fc =
popc

#{u ∈ U|Hu = c}
where popc is the population of commune c according to
the census. The range of scaling factors goes from 17.26 in
commune 2 to 93.29 in commune 8.

We now define the expected quantity of people in a commune
c, during a combination of day group d and hour group h,
in terms of the proportion of calls of each user in c and the
scaling factor of their home commune:

EPd,h[c] =
∑

u∈U
(Pu,d,h,c · FHu

)

Additionally, the expected quantity of people found in commune
c, during a day group d and hour group h, and that live in
commune c′ is given by:

EPd,h[c][c
′] =

∑

u∈U|Hu=c′

(Pu,d,h,c · Fc′) .

Note that EPd,h[c] =
∑

c′∈C EPd,h[c][c
′]. Having presented

the methodology, we now describe the results obtained.

IV. RESULTS

A. Validation Against the Survey

We first validated the proposed methodology, by comparing
it with the most traditional method used among the urban
mobility studies in Buenos Aires: the origin-destination survey
[2], [3].

Morning Noon Afternoon Night

200

300
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500

600

Morning Noon Afternoon Night

200

300

400

500

600

C 1
C 2

C 3
C 4

C 5
C 6

C 7
C 8

C 9
C10

C11
C12

C13
C14

C15

Fig. 1. Comparison between the ENMODO survey (left) and our analysis
(right), for a typical working day, and for all the communes in Buenos Aires.
The numbers in the legend correspond to the commune numbers. The y axis
shows the estimations in thousands of people.

In Fig. 1, we see that the results obtained are similar (both
plots show the same growth patterns for each commune). A
more detailed analysis of the differences between the two data
sources shows that the average difference is 5%. The highest
variation appears in Commune 1 (20% in the morning hour
group) and the second highest in Commune 6 (11% in the
noon hour group). For a more detailed analysis, we refer the
reader to [4].

B. Extension to Weekends

Given that we have successfully validated our proxy method-
ology with the origin-destination survey, we can now use it to
extend the analysis to other time periods. We examine here the
mobility during the weekends. The mobility survey [2] does
not include this information; we are thus presenting here new
results on the mobility of the citizens of Buenos Aires.

The patterns for weekends (Fig. 2) are very different:
Commune 1, the central business district of the city, is not a
major pole of attraction (as it is during weekdays), whereas
other communes (mainly Commune 14) are more attractive for
citizens on weekends. Commune 14 is well known for its bars,
restaurants and night clubs, so this pattern coincides with our
insight on the social life in this commune.

Morning Noon Afternoon Night
140
160
180
200
220
240
260
280
300
320

Morning Noon Afternoon Night
140
160
180
200
220
240
260
280
300
320

C 1
C 2

C 3
C 4

C 5
C 6

C 7
C 8

C 9
C10

C11
C12

C13
C14

C15

Fig. 2. Predictions for a typical Saturday (left) and Sunday (right) according
to our methodology, for all the communes in Buenos Aires. The numbers in
the legend correspond to the commune numbers and the y axis shows the
estimations in thousands of people.

C. Analysis of Commune 14

We analyse in more detail Commune 14 (Palermo), which
has very particular characteristics (see Fig. 3). First of all,
we remark it has a typical residential commune pattern for
weekdays (with a lower concentration of people during working
hours, and a higher concentration at night). During weekends,

Morning Noon Afternoon Night
250

260

270

280

290

300

310

320

Mon-Thu
Fri

Sat
Sun

Fig. 3. Predictions according to our method, for the different day types, for
Commune 14 (Palermo). The y axis shows the estimations in thousands of
people.
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however, Commune 14 shows a special behavior due to its
role as social and nightlife hub. During Fridays, we notice an
increase of people during the night when compared to other
weekdays, which we attribute to people going out. Saturdays
show an increase in population across all time groups, with a
peak at night that is similar to the one on Friday, and Sunday
night has the same quantity of people than a regular working
day at night, probably because people will have to go to work
on the following day. Moreover, we notice a similar number of
people on Friday night compared with Saturday morning, and
on Saturday night compared with Sunday morning. This fact
may be explained considering nightlife in Buenos Aires extends
into the morning (even until 8am). All these observations are
coherent with our knowledge of the city.

D. The City Pulse Matrix

The urban mobility information can be used to generate
what we call the City Pulse Matrix (CPM), a 2-dimensional
matrix such that, for any day group d and hour group h,

CPM [i][j] = EPd,h[i][j].

Fig. 4 shows our visualization of the matrix generated by our
predictions, on a typical weekday noon (which is the time
period that varies the most with respect to weekday nights).

Fig. 4. Visualization of the City Pulse Matrix generated with our methodology,
for a weekday (Monday to Thursday) noon, with values normalized by row.

We can see in Fig. 4 that there is a darker diagonal, meaning
that in all the communes, most of the people that spend their
weekday noon in a given commune also live there. The lightest
element in the diagonal corresponds to Commune 1 (with 24%,
followed by Commune 2 with 43%), because of the flow of
people from the rest of the city that work there.

E. Visualizing the City Pulse

Finally, Fig. 5 presents a visualization of the city pulse.
We plotted a map showing for Commune 1 and Commune 6
the number of people present there on a typical working
day (Monday to Thursday) at noon, according to their home
communes. Commune 1 is the central business district so many
people work there during the day, coming from very diverse

locations. Commune 6, on the other hand, is one of the most
populated and dense communes of the city (and represents its
geographical center), but is mainly residential. The difference
in the number of people and variety of provenance between a
central business district as Commune 1 and a more residential
district as Commune 6 can be seen clearly in Fig. 5. We have
also done a more complete analysis including other communes
and day and hour groups (as shown in Table I) achieving
similar results.

(a) (b)

Fig. 5. Visualization of the number of people present on Monday to Thursday
noon period in (a) Commune 1 and (b) Commune 6 (colored in violet) that
live in each of the other communes. The scale shows the number of people
(in thousands) each color represents.

V. CONCLUSIONS AND FUTURE WORK

We presented a methodology to estimate the flow of people
between different parts of the city using mobile phone records.
According to our validation, the method is reliable, presenting
an average difference of 5% with the origin-destination
survey [2].

We extended the analysis to weekends using the proposed
methodology, and found many interesting patterns which are
coherent with our knowledge of the city. For instance, we
showed how Commune 1, the central business district, yields
during the weekends its role as major pole of attraction to
Commune 14, which is a social and nightlife hub. We also
presented a visualization where a business and a residential
district can be clearly differentiated. A more detailed analysis
of this methodology was published in [4].

We finally introduce ideas for future work: (i) achieve a
finer spatial granularity with a richer dataset; (ii) consider the
metropolitan region (suburbs) of the city in the analysis, as
many people travel between the capital and its suburbs every
day; (iii) analyze the mobility of citizens during particular
situations or events (for example, an evacuation or a holiday).
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Detecting and understanding big events in big cities
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Recent studies have shown the great potential of
big data such as mobile phone location data to model
human behavior. Big data allow to analyze peo-
ple presence in a territory in a fast and effective
way with respect to the classical surveys (diaries
or questionnaires). One of the drawbacks of these
collection systems is incompleteness of the users’
traces; people are localized only when they are using
their phones. In this work we define a data mining
method for identifying people presence and under-
standing the impact of big events in big cities. We
exploit the ability of the Sociometer for classifying
mobile phone users in mobility categories through
their presence profile. The experiment in cooper-
ation with Orange Telecom has been conduced in
Paris during the event Fête de la Musique using a
privacy preserving protocol.

The objective of this study is to investigate the impact of
big events in big cities on the contemporary composition of
the population. The method foresees the application of a
data mining tool, called Sociometer [5, 4] on a mobile phone
dataset collected in Paris in the month in which the Fête de
la Musique occurs. This event, also known as World Mu-
sic Day, is an annual music festival taking place on June
21, the first day of summer in cities around the world. The
Sociometer, by analyzing aggregated presence profiles of mo-
bile phone users, is able to classify a population in mobility
categories hereby differentiating between residents, dynamic
residents, commuters, and visitors. The presence profiles are
represented by an aggregated presence matrix on weekly ba-
sis (weekdays and weekends) and are obtained by counting
the cell phone registrations of individuals in the areas of in-
terest. By means of a data mining strategy, the Sociometer
classifies each profile. Starting from this partition, we design
a strategy for identifying how the event impacts on the com-
position of the population, exploring both a temporal and
a spatial dimension. The spatial dimension is characterized
by the partitioning of Paris in three areas (identified as P1,
P2, and P3 so that P2 includes P1, and P3 includes P2 -
Fig. 1) based on the grouping of several administrative bor-
ders. The temporal dimension is a window of one month of
mobile phone observations analyzed with weekly and daily
granularity.

Fig. 2 shows the variation of the categories population
categories over the three areas during the whole period of
observation. It is evident that the number of visitors de-
creases from the city center (the more touristic area) to the
larger peripheral areas. Of course, this confirms the impact

Figure 1: Administrative partitioning of Paris area:
P1, P2, and P3.

of visitors in the city center of Paris, but it also implicates a
sort of interplay between the city center and it’s wider that
could be interesting to define the complex usage of the city
center by its surrounding inhabitants.

Figure 2: Variation of the composition of the popu-
lation in the three Administrative areas of Paris.

To deeper investigate this result, we perform a sort of
multi-classification analysis starting from P1 and seeing how
the classification of each category of people may change en-
larging the observation area (Fig. 3). Let us consider for
example the set of visitors in P1 (clearly are 100% in P1),
this set, in P2 and P3 become progressively 70% and 55%.
This means that the 45% of them, originally classified as vis-
itors in P1, indeed belong to a different category if we look
at a bigger area. In other words they are not “foreign” in
a strict sense, in fact almost the 20% of them, are actually
resident in P3. Moreover, Some of the visitors in P1 become
commuters in P2 and resident in P3. This may happen for
the users that work in P2, live in P3, and that visit the city
center only once in a while. This multi-classification analy-
sis adds a new dimension to the classification allowing the
analyst to refine and extend the categories with a new class
“Tourist” for users which remain visitor in all three zones,
and “Occasional visits of Resident” for users which are visi-
tors in P1 but residents in P2 or P3.

In general, an event in the city can be detected through
the study of the distributions of the presence of people cate-
gories, and in particular of the visitors. As shown in Fig. 4,
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Figure 3: Multi-Classification of each category of
users over the 3 areas.

for Paris a peak of presences is not so evident in the week of
the event (the weekdays labeled with “25 weekdays”) when
we consider the weekly distributions. This can be justified
with the fact that the event is held for only one day, as well
as by the fact that June forms the unofficial start of the
tourist season which explains the increasing trend of pres-
ences in the whole month. The event is thus hidden by the
normal activities and daily dynamics of the city.

Figure 4: Weekly distribution of the presences in
the three Administrative areas of Paris.

For detecting big (but short in time) events in very big
cities (like Paris), we come to the conclusion that it is nec-
essary to lower the temporal granularity (in this case from
weekends/weekday to days) when we study the presence dis-
tribution of people already classified. It is important to no-
tice that the first step of the analysis, i.e. the classification
with the Sociometer, uses profiles aggregated on weekly ba-
sis. As shown in Fig. 5, the daily distributions on daily
basis of the presences and the calls actually highlight a peak
on June 21st.

Figure 5: Daily distribution of presences and calls
in P1 in the month of June.

Computing the multi-classification during the only day of
the event, we find that the event is mostly a big attractor
for people around Paris rather than the classical tourists
coming from outside. In fact the 41% and 58% of the visitors
in P1 does not remain visitors in P2 and P3, respectively.
This observation gives rise to the interpretation that the
Fête de la musique is a festival for the Parisians themselves
rather than for people coming from a long distance. Such an

interpretation is not surprising at all as the festival is only
one day (a Thursday even) and imbeds within a nationwide
event in which all French cities have festivities.

Due the sensitive nature of the data, we have taken into
account the privacy issues during the entire process of analy-
sis customizing and applying the privacy risk analysis method
presented in [3] and already tested in the work presented at
CPDP in 2013 [6]. This methodology implements and satis-
fies the constraints issued by the European Union for data
protection in [2] and follows the principle given in [1]. The
risk analysis follows the idea that, given a dataset and a
specific application, it is possible to define the set of attacks
w.r.t. different levels of knowledge in order to evaluate the
risk of linkability and re-identification. After a risk is de-
tected, a technique for anonymizing the data is chosen, real-
izing a good trade-off between privacy guarantee and quality
of service.

Conclusions
The analytical process we described shows how to use the
Sociometer to classify people in categories during an event,
and it allows to reason about the event attractiveness. It
also points out how the concept of city may change depend-
ing on the spatial granularity. The study of an event with
reference to the different categories of population instead of
an undefined group of people brings out how differently an
event impacts (attracts) people at urban level. Through the
weekly analysis of the call behaviors we are able to identify
a general increasing of presences across the month, while
the event Fête de la musique emerges by computing distri-
butions on daily basis. In the case of Paris, the fact that
it is a very important city from the touristic point of view
and that attracts many visitors especially in the period of
analysis, contributes to hide the event behind the daily dy-
namics of the city. The Fête de la musique, as reported by
the domain experts, is actually a very important event that
attracts tourists and Parisian, and that involves all the city,
nevertheless, it does not affect the presences on weekly ba-
sis. With this analysis we confirm that this event has a big
effect on local residents more than external visitors. In sum-
mary, with this work we meet the following objectives: (1)
Verify how our proposed data mining methodology performs
in the discovering of big events in big cities; (2) Identify the
presence of visitors during the Festival by means of the So-
ciometer; (3) See how the composition of the population
changes along the period of observation; (4) See how the
classification of the population changes considering different
spatial resolution of Paris.

Acknowledgments. This work has been partially funded
by EIT ICT Labs - Project City Data Fusion for Event Man-
agement (activity n. 14189).
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1. INTRODUCTION
Personal mobility data is useful both for helping the jour-
ney of the data collector and, when aggregated, for improv-
ing travel infrastructure. In some application areas, such
as local or long-range public transport, taxi or car sharing,
absolute location and trajectories based on them are not suf-
ficient; the more important question is whether a particular
person is actually in a particular vehicle.

The goal of this paper is vehicle-relative positioning with
smartphones, i.e. deciding whether a person is in a par-
ticular vehicle or just near it, possibly in another vehicle.
Simply matching the spatio-temporal trajectories is not suf-
ficient for this, because of the inherent quality limits of the
data. Our approach combines spatio-temporal data with
data from other sensors, which serves as the basis for creat-
ing a comprehensive system.

2. RELATED WORK
The concept of trajectory flock is used to describe a set of
objects moving close to each other for some period of time
[1], though the question of a shared single vehicle is not
analysed. Activity recognition, typically using accelerom-
eter data, [2] is used to recognize physical activities, e.g.,
walking, sitting, running. Activity recognition is also be-
coming part of the mobile operating systems, and special
sensors are also appearing in the devices (e.g. step detec-
tor). Vehicle and passenger accelerator data were analyzed
in [3] and [4]. Indoor positioning approaches typically use
WiFi or Bluetooth scanning or magnetometer data [5]. Sim-
ilar approaches are used to detect face-to-face meetings [6].

3. APPROACH
Our approach is based on large-scale data collection, analysis
of trajectory data and sensor data mining.

3.1 Data collection
The area of study was Budapest (2 million inhabitants). Dy-
namic public transport vehicle data is available in a Web-
application and was collected by our software robot. Vehicle
positions are refreshed ca. every 30 seconds. The daily num-
ber of vehicle positions is ca. 3-4 millions (Fig. 1a). At the
time of the analysis data for about one month was available.
We developed a smartphone application to assess location
and sensor data about the personal movements. Data was
collected by 15 persons, covering altogether 140 hours of
travel time, ca. 340 000 locations (ca. 1.5 seconds tempo-
ral granularity; Fig. 1b), and sensor data (accelerometer,
gravitational, magnetometer and gyroscope, appr. 200 Hz
sampling frequency).

(a) Vehicle locations for
one day

(b) User locations

Figure 1: The collected vehicle and user location data.

3.2 Trajectory matching
We matched personal trajectories to vehicle trajectories in
the following steps:

1. Efficient spatial and temporal prefiltering of distant
vehicles;

2. Linear interpolation to compensate for the unsynchron-
ized timing of vehicle and personal position data;

3. Sophisticated weighed multiple point-pair matching,
providing also a mean squared error based confidence
measure. This is necessary because the matching of

(a) Correctness of detec-
tion (green when correct)

(b) Calculated confidence
(green is better)

Figure 2: The results of the trajectory-based vehicle detec-
tion
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a single personal location to the nearest vehicle posi-
tion performs poorly. First, position data has limited
accuracy. Second, in long vehicles a passenger can be
closer to the tracking device of another vehicle than
that of their own vehicle. Our approach eliminates
both problems.

The performance of the trajectory matching algorithm is
high in the middle of the trajectories and low when boarding
or disembarking from a vehicle, as correctly reflected by the
confidence measure also delivered by the algorithm (Fig. 2).
Thus, additional measures are required.

3.3 Sensor data based matching
To create a model for sensor based activity and vehicle type
recognition, various features of the time series data (maxi-
mum, integral, root mean square, spectrum values, all on a
window) were first calculated. Data was labelled by activ-
ity and vehicle type partly by hand, partly using trajectory
matching with past data. (Fig. 3).

Data mining algorithms were trained and tested on this
data, where test data was selected across different vehicles
and persons. The binary prediction (vehicle/on foot) per-
formed best with the C4.5 algorithm, achieving 97.5% accur-
acy. The multiclass prediction of the vehicle type (bus/tram)
had a performance of 86% using Bayesian network. The
learning algorithms selected mainly accelerometer and, to
a smaller extent, magnetometer and gyroscope data as re-
levant. After training, prediction with these algorithms is
efficient and can be run on smartphones.

The combination of trajectory matching and sensor based
matching achieves better overall results. The uncertainty
of trajectory matching at the beginning and at the end of
the journey is compensated for by sensor data. Past data
can also be used to improve the quality of sensor data based
matching, as it can be automatically labelled by trajectory
matching.

4. POTENTIAL APPLICATIONS
One possible application area of vehicle-relative position-
ing is public transportation. Here individually customized
transportation information for users as well as improved
statistics and control information for public transportation
companies can be obtained from the data. Beside public
transportation, dynamic car-pool organization and the de-
tection of face-to-face meetings inside vehicles can be sup-
ported by our approach.

5. SUMMARY AND OUTLOOK
We presented an approach for vehicle-relative positioning
based on trajectory matching and extended by sensor data
based matching. The approach was applied for a reasonable
amount of data and yielded promising results.

Future work is planned on improving the algorithm, testing
its performance and streamlining data collection and pro-
cessing so that the system can be scaled up for a large num-
ber users.

The research was partially financed by the Rectors’s Office of
Pázmány Péter Catholic University, project number KAP-
1.2-14/007.

(a) Vertical acceleration

(b) Spectrum of vertical acceleration

(c) Magnitude of gyroscope values

Figure 3: Some of the calculated features of the sensor val-
ues. Below the graphs the colors show the actual activity:
red is walking, yellow is tram, green is cycling.
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Change Detection in Human Mobility Patterns from 
Successive OD Matrices 

Julio C. Chaves1,2, Moacyr A. H. B. da Silva1, Alexandre G. Evsukoff2 
  

1Getúlio Vargas Foundation, School of Applied Mathematics, 
Praia de Botafogo 190, Botafogo, Rio de Janeiro, Brazil 

  
2Coppe/Federal University of Rio de Janeiro, 
Cidade Universitária, Rio de Janeiro, Brazil 

  
OriginDestination (OD) matrices have been widely used for transportation planning and                     
traditionally is computed from expensive surveys, made once each several years. The                       
availability of mobile phone data allow to compute OD matrices easily from Call Detail                           
Records (CDR) data. Recent studies have shown that mobile phone data are a reliable                           
source of information to compute OD matrix [1,4,5] and the mobility of phone users can be                               
extrapolated to the whole population. 
This work present a study to detect changes in human mobility patterns in the Rio de Janeiro                                 
metropolitan area. The study was carried out from a dataset collected during 2014,                         
comprising the activity of an average of 2,7 millions of users and 1,700 cell towers. The                               
dataset was provided by one mobile carrier and only outgoing calls were available. The                           
Voronoi regions of cells are aggregated to represent district of the Rio de Janeiro city or                               
suburb cities in the metropolitan area.  
The dataset were cleansed before used to compute OD matrices. As only outgoing calls were                             
available, the effect of prepaid users was expressive. In Rio de Janeiro, about 80% to 85% of                                 
the users correspond to prepaid contracts and those users are mostly lowincome population,                         
in contrast, postpaid users correspond to medium to highincome population.  
These asymmetries were corrected from census data, in order to gather user mobility as an                             
approximation of the population mobility. The place of residence is estimated by the most                           
frequent call location during the night and weekends (provided some constraints). The place                         
of residence is used to compute the user/population ratio for each neighborhood and adjust                           
the number of users to the number of inhabitants.  
In this work, daily OD matrices are computed and only users with a recorded displacement                             
within a day are considered. If an user has visited more than two different places within a day                                   
each pair of visited locations are used to compute the OD matrix in that day. The OD matrix                                   
computed in the number of trips is divided by the total number of trips. All the process is being                                     
implemented in a high performance database system, such that a daily OD matrix can be                             
computed in seconds. 
The procedure is employed to compute successive OD matrices, one for each day, during the                             
whole year of 2014. The OD matrix is computed with respect to the neighborhoods and                             
correcting for the user/population ratio for each neighborhood. For each day t, the element                           
ODij(t) represent the mobility from neighborhood i to neighborhood j on that day. As result,                             
there is one time serie ODij(t),t =1,...,N for each pair of neighborhoods. The analysis of these                                   
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time series will allow to identify differences of mobility in workdays and weekends as so as                               
changes due to seasonality or events. The change detection is computed by standard                         
statistical methods like CUSUM [2,3] as reference, but other methods will also be                         
investigated. 
The year of 2014 is particularly interesting for this study as it was the year of the FIFA 2014                                     
World Cup, which caused a great impact in the city mobility, specially in the days of the                                 
national team other games and games in the city. Moreover, the city is under work with the                                 
introduction of new transportation systems a weel as a complete refurbishing of the harbor                           
region with the dismantlement of a former important expressway. Therefore we expect to                         
verify the impact of these changes in the mobility of the city. 
 
 
[1] J. Park, D.S. Lee, and M. C. González, “The eigenmode analysis of human motion,”                             
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2010. 
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Prentice Hall, 1993. 
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Routledge, 2008. ISBN: 9780750669627. 
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[5]  SLINGSBY, A., BEECHAM, R., WOOD, J. "Visual analysis of social networks in space 
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Inferring social status and rich club effects in enterprise
communication networks1

Yuxiao Dong†, Jie Tang‡, Nitesh V. Chawla†,∗, Tiancheng Lou], Yang Yang†, Bai Wang¶

† Interdisciplinary Center for Network Science and Applications, Department of
Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, U.S.A.
‡ Department of Computer Science and Technology, Tsinghua University, Beijing, China
] Google Inc., Mountain View, CA, U.S.A.
¶ Department of Computer Science and Technology, Beijing University of Posts and
Telecommunications, Beijing, China

∗ Email: nchawla@nd.edu

Abstract

Social status, defined as the relative rank or position that an individual holds in a social hier-
archy [3], is known to be among the most important motivating forces in social behaviors [5].
In this paper, we consider the notion of status from the perspective of a position or title held
by a person in an enterprise. We study whether enterprise communication logs can help reveal
how social interactions and individual status manifest themselves in social networks. To that
end, we use two enterprise datasets with three communication channels — voice call (CALL),
short message (SMS), and email (EMAIL) — to demonstrate the social-behavioral differences
among individuals with different status. Specifically, we investigate the interplay of social status
and several well-known social theories, including structural hole, social balance, homophily and
social clique.

Structural Hole. The principle, that individuals can benefit from serving as intermediaries
between others who are not directly connected, forms the underpinning for the theory of struc-
tural holes [1]. Our analysis clearly shows that managers are more likely (70% in CALL, 55% in
SMS, and 43% in EMAIL) to be spanned as structural holes across the three networks. In other
words, the structural holes extracted from enterprise communication network structure reveal
the social status of staff in their company. This can be explained by the fact that managers
usually need to operate the responsibility of correspondents and organizers within the company,
especially for the experience for connecting different departments or groups to cooperate.

Link Homophily. Homophily is the tendency of individuals to associate and bond with
similar others [4]. Lazarsfeld and Merton [4] argued that individuals with similar social status
are more likely to associate with each other, which is called status homophily. Our analysis shows
that two individuals who share more common neighbors will have a tendency to have similar
social status in the company. Managers’ ability of creating and maintaining social connections
in enterprise networks is more prominent that subordinates’. This could have the potential to
further promote their status in companies, which further highlights the rich club effect.

Social Balance. Triad is one of the simplest grouping of individuals that can be studied
and is mostly investigated by microsociology [3]. We find that the managers’ overall balance
ratios are larger than the subordinates’ across all the three channels. Moreover, the individuals
in organizations have the tendency to maintain balanced relationships with people of the same
status; this phenomenon coincides with the link homophily observed above. We conjecture that

1This work is accepted at PLOS ONE, 2015 and the abstract is also submitted to the International Conference
on Computational Social Science (IC2S2).
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Figure 1. Social Clique vs. Social Status. Distribution of social clique in enterprise
communication networks. M: Managers; S: Subordinates; A: All employees;

the relatively high status empowers the managers to connect with more people and maintain
the relationships within the enterprise, enhancing the chance to promote their status.

Social Clique. Clique is a concept in both social sciences and graph theory. In social
sciences, clique is used to describe a group of persons who interact with each other more regularly
and intensely than others in the same setting. Here we aim to examine how managers and
subordinates form cliques and to which extent they are connected. We build two sub-networks
that only contain mangers or subordinates respectively for each type of a network derived from
each of the communication channels. Figure 1 shows the distributions of clique size, conditioned
on the status of individuals (employees in the enterprise). For reference, we also plot the overall
clique distribution in each full network. It is obvious that the distributions of managers and
subordinates are quite different and the maximal cliques for managers are much larger than
these for subordinates.

The correlations between social status and several social theories provide the evidence of
“rich club” [2] maintained by high-status individuals. Inspired by the observations around the
social structure and characteristics, and their potential to infer social status in a network, we
also developed a computational model—Factor Graph Model—to predict social status using the
aforementioned characteristics as features. We demonstrate that the social status of more than
85% – 93% of individuals can be inferred from their communication interactions among their
colleagues. This prediction results further confirm our observations on communication behaviors
and social theories are general across different companies, even with different communication
channels (CALL vs. SMS vs. EMAIL).

References
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Home and Work Estimation from Mobile Phone Data: Improving
Accuracy and Privacy through Spatial Aggregation

Bradley Sturt1, Jameson L. Toole1, Serdar Çolak2, Marta C. González2
1Engineering Systems Division, MIT, Cambridge, MA, 02139

2Department of Civil and Environmental Engineering, MIT, Cambridge, MA, 02139
bsturt@mit.edu

1 ABSTRACT

Analysis of mobile phone data is becoming increas-
ingly complex. Many algorithms and applications still
use simple methods of detecting and assigning home
and work locations to users from mobile phone meta-
data. There are clearly errors in these simplistic ap-
proaches, but it is unclear how much they affect other
results. There are also issues with privacy. We make
progress on both fronts through demonstrating a new
approach for measuring home and work. Through ap-
plying our method to the Boston metropolitan area,
we show that the proposed approach can improve the
accuracy of home and work commuting flow estima-
tions while simultaneously improving and preserving
the privacy and anonymity of users.

2 INTRODUCTION

Detecting the home and work locations of residents of
cities is vital to numerous domains, including trans-
portation, urban planning, and sociology. The emer-
gence of mobile phone metadata offers an opportu-
nity to detect home and work locations of users [1].
Through leveraging techniques to find aggregate home
and work locations at the census tract-level, mobile
phone metadata can be used to dynamically estimate
population densities [2], commuting flows [3], and con-
gestion [4].

Despite the ubiquitous use of home and work loca-
tions, the simplicity of the techniques to detect them
from mobile phone data at census tract aggregation
have problems.

First and foremost, there are quality problems
with any Cell Detail Record (CDR) dataset, rang-
ing from the noise inherent to the spatial compo-
nent of calls, to irregularity and sparsity in CDR en-
tries for individual users. The accurate estimation of
home and work locations from a dataset hinges on the
dataset’s quality, and in the presence of these common
problems, the accuracy will undoubtedly be degraded.

Figure 1: The correlation between home and work
trips from the census (x-axis) and mobile phone data
(y-axis) for the Boston metropolitan area. The Pear-
son Correlation Coefficient equals 0.5312

However, the extent to which the accuracy of home
and work locations is affected is difficult to quantify,
due to the absence of a high-accuracy, ground truth
dataset. The most common candidate to compare
against is census data. At the census tract level,
the United States government publishes the Cen-
sus Transportation Planning Product (CTPP), which
provides estimations of true tract-to-tract home and
work commuting flows (i.e. the number of residents
of one tract who commute to work on another). Fig-
ure 1 shows the correlation between CDRs and CTPP
at the tract level.

Due to the often low commuting flows between
tracts and the limited sample size used to conduct
the survey, there is high uncertainty with many of
the commuting flow estimations in the CTPP. Thus,
while it is tempting to interpret Figure 1 as the accu-
racy of the home/work estimations from a CDR, its
correlation is of limited insight given the inaccuracies
in both datasets.

Second, there are privacy issues from finding home
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Figure 2: The Boston metropolitan census tracts, ag-
gregated to zones of size 5.02[km2]

and work commuting flows at the census tract level,
stemming from the low commuting flow counts be-
tween many tracts. The privacy and anonymity of
phone users can be compromised with relatively small
data samples [5], and in the census data, many cen-
sus tract pairs have commuting flows with fewer than
10 individuals. While there are certainly errors with
the CTPP, due to the prevalence of tract pairs with
low commuting flows, it is safe to assume the trend
is likely to reflect reality. Thus, calculating the home
and work locations of users has potential to infringe
upon the anonymity of users, for users that commute
between two tracts with low commuting flows.

3 METHODS

Lenormand et al.[6] analyzed the similarities and dif-
ferences of the aspects of a city that were inferred
using different metadata sources (Twitter, cell phone
records, and the census) Because the data came at
different spatial regions and different levels of granu-
larity, the authors rasterized the spatial area of a city
into square-regions of 1 and 2 kilometers.

Adopting the rasterizing approach, we demon-
strate that quality and anonymity of the tract-
level commuting data can be ameliorated through
spatially-aggregating the data through rasterization
at various granularities.

The intuition behind spatial aggregation is that
flows between square regions that encompass multi-
ple census tracts will be greater and less noisy than
flows between individual census tracts. The rasteriz-
ing of the metropolitan area of Boston at a cell size
of 5.02[km2] is visualized in Figure 2. For the rest of

this paper, we will refer to the square cells as zones,
and we will denote any spatial area as a region.

3.1 COMPUTING AGGREGATED
FLOWS

First, we aggregate the tract-to-tract commuting
flows from the census data. Let T t

ij and T z
ab denote

the commuting flows between tracts i and j or zones
a and b, respectively. Furthermore, let P t

i and P z
a de-

note the polygons corresponding to tract i and zone a,
respectively, and let |P | denote the area of a polygon
P .

Our goal is to compute the commuting flows T z
ab

between each pair of zones a and b. Therefore, for
each pair of zones a and b, we compute

T z
ab =

∑

∀i,j

( |P t
i ∩ P z

a |
|P t

i |

)(∣∣P t
j ∩ P z

b

∣∣
∣∣P t

j

∣∣

)
T t
ij (1)

where
|P t

i ∩P z
a |

|P t
i | is the portion of tract i that overlaps

with zone a.
Second, we aggregate the home and work loca-

tions from the CDR data. For each user, we compute
their home and work coordinates [3]. Then, for each
pair of zones, we compute the number of users in the
CDR dataset with home and work locations in the
two zones.

4 RESULTS

We compute the home and work commuting flows
and calculate the correlations between the census
and CDRs at various zone sizes. Figure 3 shows
the correlations between the datasets at zone sizes
of 12[km2],22[km2],52[km2], and 102[km2]. The cor-
relation between the datasets increases drastically as
the zone size increases. The correlation between the
datasets at the 12[km2] zone size is 0.5041, which
is not any improvement over the tract level. At
greater zone sizes, however, the correlations improve
to 0.9360 and 0.9598 at zone sizes of 52[km2] and
102[km2], respectively.

First, we interpret the correlation as follows: there
are underlying quality problems in both datasets, re-
gardless of aggregation. However, if we assume that
the errors between the datasets are uncorrelated, we
can conclude that the high correlation at larger zone
sizes implies that the computed flows are likely to
be close to reality. Furthermore, since the results of
home and work estimations are highly correlated to
the census data, the results suggest that mobile phone
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Figure 3: Correlations between aggregated census and mobile phone Home and Work commuting flows. The
correlation coefficients between the two datasets at grid sizes of 12[km2],22[km2],52[km2], and 102[km2] are
0.5041, 0.8459, 0.9360, and 0.9598, respectively.

data is as good as census surveys in estimating home
and work locations for residents at higher levels of
aggregation.

Second, we observe that the commuting flows be-
tween zones, compared to commuting flows between
tracts, are generally much larger. This relationship
increases as the zone size increases. Thus, as we in-
crease the zone size, we can also improve privacy of
users by increasing the difficulty to deanonymize in-
dividuals who have home and work locations in tracts
with low commuting flows.

Spatial aggregation is a necessary step for re-
searchers analyzing and integrating geographic and
mobile phone data. Through our results, we have
demonstrated that our method for spatial aggregation
with zone size as a tunable parameter allows us to un-
derstand the tradeoffs between accuracy, anonymity,
and resolution. In contrast to aggregating to fixed
regions like census tracts, our method enables re-
searchers to quantitatively tune the size of those re-
gions to best match the accuracy and privacy needs
of the application.
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Studying Human Behavior through the Lens of Mobile Phones during Floods

A. J. Morales1, D. Pastor-Escuredo1, Y. Torres1, V. Fŕıas-Mart́ınez2, E. Fŕıas-Mart́ınez3, N. Oliver3,
A. Rutherford4, T. Logar4, R. Clausen-Nielsen4, O. De Backer4, M. A. Luengo-Oroz4

1Universidad Politécnica de Madrid, 2University of Maryland
3Telefónica Research,4United Nations Global Pulse

Natural disasters affect hundreds of millions of people worldwide every year. Emergency re-
sponse efforts depend upon the availability of timely information, such as information concerning
the movements of affected populations. The analysis of Call Detail Records (CDR) captured from
the mobile phone infrastructure provides new possibilities to characterize human behavior during
critical events. In this study, we combine remotely sensed data and CDRs to understand how peo-
ple communicated during severe floodings in the Mexican state of Tabasco in 2009. This research
demonstrates that CDR data has the potential to provide useful information on human behavior
for improved emergency management and humanitarian response. Our results could also serve as a
potential proxy indicator for flood impact and risk awareness.

The lack of timely, accurate information about move-
ments and communications of affected populations dur-
ing natural disasters can limit the effectiveness of human-
itarian response. However, the growing ubiquity of mo-
bile phones has revealed new opportunities for accessing
such information. Mobile phone data can provide valu-
able insights, in order to tackle issues related to economic
and humanitarian development [2], such as understand-
ing the behavior of affected populations during a natural
disaster [1]. For example, recent research has demon-
strated the potential of mobile phone data to help study
population movements after an earthquake in Haiti [3] or
to model malaria outbreaks in Kenya [4]. During these
critical events, the patterns of collective human behavior
are disrupted, as the population faces the ongoing emer-
gency. Such effect is closely related to the emergence of
large information cascades, since people tend to commu-
nicate with others, triggering chain reactions in the social
network [5]. The geographical distribution of the activity
can also be used to characterize the catastrophe. For in-
stance, Twitter activity allows to locate an earthquake’s
epicenter with extraordinary accuracy by geographically
measuring the volume of related tweets [6].

The goal of this study is to develop and apply meth-
ods to assess the suitability of CDR data to characterize
the impact of floods on the population. Our vision is
to build CDR-based decision-support tools to help the
public sector better respond to floods and other natu-
ral disasters. We investigate the viability of using CDR
data combined with other sources of information to char-
acterize the floods that occurred in Tabasco, Mexico in
2009. In particular, we analyzed CDRs of the geograph-
ical area affected by the floods during a period of nine
months (July 2009 to March 2010). The main technical
contribution of this work is the development of a mul-
timodal data integration framework that facilitates the
combination of CDR data with data from other sources,
in order to characterize changes in the communication
patterns during the floods. We also contrast our results
with external ground truth information. For a longer
description of the research presented in this short paper

please refer to [1].

The methodological framework proposed in this study
is composed of the following steps: First, we evaluate the
representativeness of the data by using the 2010 census
[10] of Tabasco as the ground truth. For this purpose,
we compare the census data with a data-driven social
baseline that we built based on the location of the home
antenna tower (HAT) for each phone, meaning the an-
tenna tower most used at night during the baseline (BL)
period [7]. Second, we integrate additional and diverse
data sources to further understand the phenomena. We
use remote sensing through medium resolution (15 to 60
meters) ETM+ Landsat7 [8] satellite images to detect
and geographically confine the submerged land. More-
over we analyze the Tropical Rainfall Measuring Mission
[9] data, in order to build a temporal series of precipi-
tations and to understand the relationship between the
natural phenomenon and mobile phone activity.

In order to detect abnormalities in the activity, we ex-
amine mobile phone activity data before, during and af-
ter the disaster. We propose the variation metric that
relies on the comparison of the number of phones plac-
ing or receiving calls per antenna x(t), against their
characteristic variation obtained during the baseline pe-
riod (BL). Mathematically, the variation metric is de-
fined as the z-score from x(t) –i.e. the normal distribu-
tion characterizing the baseline– and defined as xnorm =
(x(t)−µBL)/σBL, where the pair (µBL, σBL) statistically
characterizes the activity during the baseline period. By
means of analyzing the normalized series, we establish
a baseline understanding of emergency behavior which
enables us to measure the rate of disaster recovery and
to show how affected populations behave in response to
flooding. The variations in the number of active phones
connected to each cell tower reveal abnormal activity pat-
terns in the most affected locations during and after the
floods that could be used as signatures of the floods –
both in terms of infrastructure impact assessment and
population information awareness.

This research demonstrates that mobile phone data has
the potential to provide timely information about human
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2

FIG. 1. Tabasco impact maps. The top panels show the absolute value of the antenna variation metric during an arbitrary
day before floods (top left) and another one during floods (top right). In these panels, each antenna is represented by a circle
with color and size proportional to the daily variation. The segmented flooded area has been colored in light blue. The insets
display the temporal series of the antenna variation metric, and the green line indicates the day of observation. In the top right
panel, antennas near the flooding area dramatically increased their variation during the floods. In the bottom panels, we show
two visualizations of human displacement networks among cell towers. Towers are connected if a person makes two consecutive
calls. We show an average week of the network before the floods (bottom left), and an aggregated network across the floods
(bottom right). The edge color means the direction of the displacement, from green to yellow. It can be noticed that during
floods (bottom right) the graph is denser, and more connections are established between the towers.

behavior for improved emergency management and hu-
manitarian response. Insights gained from CDR anal-
ysis could also serve as a potential proxy indicator for
flood impact and risk awareness. On one hand, mobile
phone data can be highly representative of the popula-
tion’s behavior. A comparison between CDR data and
census data yields a strong linear relation between official
population statistics and population estimates computed
from CDR data. Furthermore, civil protection warnings
are not necessarily an effective way to raise awareness. In
fact, a civil protection warning was issued on the day of
highest rainfall in Tabasco in 2009. However, big spikes
in phone activity were only observed in two cell phone
towers along the most affected road when floods already
showed initial impacts, meaning that the civil protection

warning did not generate similar levels of awareness. This
finding reveals important behavioral insights for emer-
gency responders on how and when affected populations
are made aware of a disaster. Finally, mobile activity
can provide signals of flooding impact. When analyzed
against the baseline activity, cell phone towers with the
highest variation metric in the number of calls made dur-
ing the floods were located in the most affected locations
(see top panels in Fig. 1). Note that mobility patterns
also changed significantly near the main cities and the
capital as the ground transport system and the physical
size of the cities constrain how the people could move
during the floods (see bottom panels in Fig. 1).

In summary, aggregated and anonymized mobile phone
data can be used to assess risk awareness, understand the
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3

effect of public communications such as disaster alerts
and measure the direct impact of floods on the popula-
tion. The research findings described in this paper show
that CDR data could be a beneficial source of informa-
tion for both emergency management and resilience as-
sessment. Analyzing mobile activity during floods could
be used to potentially locate damaged areas, efficiently

assess needs and allocate resources (for example, sending
supplies to affected areas). Identifying cell phone towers
in the most affected areas of flooding might also serve
to improve and target public communications and safety
alerts, as well as help measure the effectiveness of such
early warning announcements.

[1] Pastor-Escuredo, D., Morales, A. J. et al., Flooding
through the Lens of Mobile Phone Activity. IEEE Global
Humanitarian Technology Conference, GHTC 2014.

[2] Decuyper, A. et al., Estimating Food Consump-
tion and Poverty Indices with Mobile Phone Data,
arXiv:1412.2595, (2014)

[3] Bengtsson, L. et al., PLoS Med 8 (2011), no. 8, e1001083.
Improved response to disasters and outbreaks by tracking
population movements with mobile phone network data:
A post-earthquake geospatial study in haiti,
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line O. Buckee, Quantifying the Impact of Human Mobil-
ity on Malaria, Science 338 (2012), no. 6104, 267–270.

[5] Bagrow, J. P. et al., Collective Response of Human Popu-

lations to Large-Scale Emergencies, PLOS ONE 6 (2011),
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[6] Sakaki, T. et al. Earthquake shakes twitter users: real-
time event detection by social sensors, Proceedings of the
19th international conference on World wide web (New
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[7] Becker, R. et al., Human mobility characterization from
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74–82.
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Earthquakes, Hurricanes and Mobile Communication Patterns in the New York Metro 
Area: Collective Behavior during Extreme Events 
 
Christopher Small1  Richard Becker2  Ramón Cáceres3  Simon Urbanek2 
 

1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA 
2 AT&T Labs – Research, Bedminster, NJ, USA 
3 Google, New York, NY, USA 
 
We use a spatially and temporally extensive collection of voice call and SMS text message 
volumes to quantify spatiotemporal communication patterns in the New York Metro area 
before, during and after the Virginia earthquake and the passage of Hurricane Irene in the 
same week of 2011.  We compare and contrast spatial and temporal disruptions to normal 
patterns of voice and text communication in response to each of these extreme events in a 
diverse range of environments within the New York Metro area. We have been careful to 
preserve privacy by using only anonymous and aggregate data.  Results show both 
similarities and differences in call and text responses to both the earthquake and the 
hurricane.  The earthquake produces an instantaneous and pervasive response followed by 
a ~90 minute temporal disruption to both call and text volume patterns.  The hurricane 
produces a two day, spatially varying disruption to normal call and text volume patterns.  
Comparison of call and text response to these events yields less intuitive results. Both call 
and text volumes increase abruptly following the earthquake but call volume anomalies are 
much larger than text volume anomalies.  The magnitude of the call volume anomaly 
diminishes with distance from the epicenter with multiple spatial localizations of high 
response sectors in Manhattan.   On the day preceding the arrival of the hurricane, coastal 
evacuation zones show varying response both in location and in call versus text volume.   
These spatial patterns suggest partial, but not full, compliance with evacuation orders for 
most low lying areas in NYC and surroundings.   In most coastal areas call volumes 
dropped anomalously in the afternoon before the hurricane’s arrival, but text volumes 
showed a much less consistent pattern and often did not decrease in parallel with calls.   In 
terms of total daily volumes, most low lying coastal areas show a decrease in both calls and 
texts relative to the previous week.   
 
Understanding dynamics of collective human behavior during extreme events has obvious 
relevance to both preparedness and response.  Most current knowledge of human behavior during 
extreme events comes from relatively small numbers of retrospective observations – often 
qualitative with unknown accuracy or degree of representation of the impacted population.  In 
contrast, mobile communication data can provide pervasive, quantitative observations of human 
communication patterns before, during and after extreme events [1]. In this study we use a 
spatially and temporally extensive collection of voice call and SMS text message volumes to 
quantify spatiotemporal communication patterns in the New York Metro area before, during and 
after the magnitude 5.8 Virginia earthquake (2011-08-23) and the passage of Hurricane Irene 
(2011-08-28), both of which occurred in the same week of 2011.   

 
Numbers of voice calls (calls) and SMS text messages (texts) were measured at 1 minute 
intervals over the course of a year (2/1/2011 through 1/31/2012) at the spatial resolution of 
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azimuthal sectors of almost 11,000 mobile network antennas within a 50 mile (80.5 km) radius 
of Times Square in NYC.  We aggregate these call and text volumes at different spatial and 
temporal resolutions and use spatial correlation matrices to quantify normal spatial and temporal 
patterns and their disruption before, during and after both events.  We have been careful to 
preserve privacy throughout this work. In particular, this study uses only anonymous and 
aggregate data.   

Spatial and temporal correlation matrices can be used to quantify both regularities and 
disruptions of spatiotemporal patterns in call and text volumes.  The spatial correlation matrices 
of daily call and text volumes clearly resolves differences between weekday and weekend spatial 
patterns, as well as decorrelations associated with holidays when the normal weekly spatial 
patterns are disrupted.  The largest decorrelation observed in 2011 is associated with Hurricane 
Irene.  Spatial correlation matrices of hourly call and text volumes in the weeks before, during 
and after the earthquake and hurricane show the evolution of the spatial disruptions in greater 
detail (Fig. 1).    
 

 
 
[1] Bagrow, J.P., Wang, D., & Barbási, A.-L. (2011). Collective response of human populations to large-

scale emergencies. PLoS ONE, 6, 1-8 
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Recent Results/Work in Progress 
Application of Floating Phone Data (FPD) in Germany  
January 2012 – March 2015 
 
Dipl.-Ing. Moritz von Mörner, vonmoerner@verkehr.tu-darmstadt.de 
Technische Universität Darmstadt, Germany 
Department of Civil and Environmental Engineering 
Chair of Transport Planning and Traffic Engineering 
 
Objective: 
Determine the state of science and technology for the use of Floating Phone Data (FPD) in 
traffic and transport research. Feasibility study for the application of FPD as input value for 
e.g. transport models and transport planning.  
 
Focus: 

• Long distance travel in Germany 
1. rail 
2. motorway 

• Regional public transport with busses in rural areas. 
 
This project is conducted for : Deutsche Bahn AG 
FPD provider: Motionlogic GmbH / T-Systems International GmbH 
 
Floating Phone Data restrictions at the moment: 

• Raw data cannot be obtained, only aggregated and extrapolated data is available, 
• Aggregated data is available in 90 minutes blocks, 
• Max. duration for tracking: 90 minutes, 
• Min. five phones registered per time unit and cross section/ the same origin 

destination connection are needed to obtain data, 
• The FPD is aggregated and extrapolated from signals of one carrier to the overall 

amount of people in the area, assuming one SIM card per person. 
 
Other Data: 

• Cross section counts along the A8 between Ulm (Baden-Württemberg) and Munich 
(Bavaria) – all cross sections that were available in the study period are included, 

• 9 cross sections in both directions, 
• Sum of all vehicles and distinction of 8 vehicle types, 
• Extrapolation to number of people crossing the cross section (with average 

occupancy rates), 
• Train occupancy for one long distance train between Munich and Ulm in passenger 

counts. 
 
Preliminary Results: 
 
1. Stationary vehicle counts were compared to extrapolated number of people from FPD (see 
Picture 1). 
The correlation between extrapolated data and vehicle counts is quite good, especially 
during workdays with only a few r-values below 0.9. At two cross sections some anomalies 
were detected, which might be due to interference in the measurements through other roads 
close-by the surveyed sites. Converting these numbers to passenger per vehicle showed a 
very high fluctuation over the day, where occupancy rates were especially high during the 
night. Trying to understand the fluctuation, with an average for vehicle occupancy the overall 
number of people was calculated to be compared to the extrapolated data from FPD. This 
comparison showed that some of the patterns did match and others did not. However, we 
were not yet able to identify a clear pattern.  
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2. Passenger counts on one long distance ICE-train from Munich to Stuttgart were conducted 
and compared to the corresponding extrapolated FPD counts (see Picture 2). The 
comparison shows that during workdays and weekend there are different offsets. In general 
extrapolated FPD counts seem to be higher than passenger counts on weekdays, whereas 
the FPD counts on weekends are lower than the corresponding passenger counts. However, 
due to the limited number of data samples no direct relation can be determined. 
 
Now we’re in the midst of identifying possible flaws in the extrapolation and comparison. 
Furthermore, in this project a comparison of passenger counts in busses in a rural area in 
Germany is planned. Passenger counts are done manually on busses and these numbers 
will be compared to extrapolated occupancy from FPD. 
 
Conclusions: 
 
To obtain detailed information more insight into the extrapolation process is needed as well 
as more data samples to obtain viable conclusions from the data. Towards the feasibility on 
using FPD as input data for e.g. transport models, regarding the mentioned restrictions, no 
comment can be made at this stage of the project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Picture 1: Comparison of movement counts and number of vehicles (with theoretical occupation) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Picture 2: Comparison of long distance train passenger counts and extrapolated FPD (Source: Deutsche Bahn)  

Vergleich von manuell erhobenen Fahrgastzahlen mit Messungen 
mittels Floating Phone Data

DB Mobility Logistics AG | Verkehrsnetzentwicklung und Verkehrsmodelle (GSV) 2

ICE 1082/1132 zwischen München Pasing und Augsburg Hbf im Zeitraum von 07.07.2014 bis 20.07.2014

r-value of  
vehicles/90 minutes and 
movements/90minutes 
r = 0.92 
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Evolving classification based on CDR-derived 
behavior patterns 

Extended abstract 

Michal Mucha, Dominik Filipiak, Agata Filipowska 
Department of Information Systems 

Poznan University of Economics 
Poznan, Poland 

firstname.lastname@kie.ue.poznan.pl 
 
 

The ubiquity of mobile phones, and the immense amount of 
data that is generated with their use, open up vast possibilities 
for research and real life applications. Use of mobile phones by 
all parts of the population enables research on both macro and 
micro scale. Mobile phone datasets describe user 
telecommunication activity, tagged with approximate 
geographical location & time; on top of that, social relations 
can be modeled with the use of graphs [1], [2]. Such a wide 
spectrum of information about a great number of individuals 
could prove to be a valuable resource for research in the fields 
of psychology and sociology. In fact, this potential is already 
being successfully explored by [3]–[7]. The authors of this 
paper wish to contribute towards further efforts of this kind by 
providing a useful tool. 

We introduce an approach, stemming from Behavior 
Informatics (BI) [8], to prepare behavior vector sequences 
using Call Detail Records (CDR). A behavior vector is 
prepared from each telecommunications activity represented by 
a CDR entry. Spatial and social information contained in CDR 
datasets can be interpreted with relevant methods and used in 
the composition of behavior vectors; i.e. the importance of 
certain locations to individual users may be estimated [9], and 
then used to label users’ actions. The resulting behavior vector 
sequence may then be used for creation of econometric models, 
finding particularly interesting behaviors, etc. An example, 
anonymized dataset of 1 month, 8000 unique locations, and 
3.35 million active users, served for the creation of such a 
behavior vector sequence. Elements of the vector, derived from 
CDR, are: user ID, location category, relation strength 
category. 

Spatial description of each CDR entry is given as the 
transceiver station, which was used to handle the service. One 
or more of such stations are placed together with the aim to 
cover a certain area [10], [11]. Thus a CDR entry means that a 
certain user was at a certain area. To give an example of 
incorporating location into the behavior vector sequence, we 
propose the use of information on identified places of 
importance to individual people, as proven to be possible by 
[9] and [12]. In our experimental setting, we use a simplified 
approach to estimate home and workplace locations for the 
users in the dataset available to us. The personal categories 
assigned to locations are then used in the composition of 

behavior vectors. This demonstration shows the possibility of 
inclusion of research such as [13], and other kinds of methods, 
into social and psychological studies based on mobile-phone 
data. 

In this way results of other methods may be used to 
compose the behavior vector. To illustrate how research of 
relation strength estimation, such as [14]–[17], can be included 
the BI framework, we propose a simplified approach towards 
categorization of relations between users in the dataset 
available to us. We use a simple categorization of relations into 
strong and weak. Top 5 most contacted people, who also 
satisfy the arbitrary threshold of 15 connections per month, are 
deemed strong relations; all others - weak. The result of this 
simplified categorization is included in the behavior vectors, 
and can easily be replaced by more elaborate and accurate 
methods, i.e. based on community structure [18], [19]. 

Similarly, other methods may be used to complement or 
replace the proposed modules with which the behavior vector 
sequence is constructed (i.e. analysis of physical meetings 
[20]). 

As the main contribution, we propose the use of an 
Evolving Agent-based Classifier (EVABCD) (originally 
proposed in [21]) with corrections and modifications that allow 
temporary (instead of the default permanent) memory of user 
behavior. The original version of the classifier is designed by 
its authors to allow efficient processing of data streams with 
the use of recursion to reduce memory and computational 
requirements of the method. Moreover, the evolving nature of 
the classifier means that during its functioning new classes 
appear when new pattern of behavior emerge in the population, 
and classes representing behavior patterns that ceased to be 
expressed by users are removed. These features are retained, 
with the additional benefit of a limited memory for past 
behavior patters.  

Such classification of behavior patterns is suggested by 
authors to serve e.g. as a foundation for scientific comparison 
of results of psychological tests (as in [4]) with mobile dataset-
derived behavior observations, studies of sociological 
phenomena, as well as any other scientific work that would 
employ the possibility of the macroscopic scale of mobile 
phone datasets.  
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Fig. 1.  A profile of behavior vector occurrence frequency that is the closest representation of the profiles of 17% of the 
population. WS means that the call was made from work to a strong relation contact. OS means that the call was made from 
other location (other than home or work), to a strong relation contact. 2- and 3-element sequences show the frequencies of 
patterns of consecutive actions. This particular prototype represents users who call only a stable group of contacts, don’t call 
from home, and do slightly more calls from work than from other locations. Only non-zero frequencies are displayed in this 
figure. 

 

 

 
Fig. 2. Distribution of the population into behavior-based classes 

The classification was carried out on the modified, 
recursive EVABCD. In a single-machine experimental setting 
we analyzed 550 thousand users who performed 8 million 
actions (one day of activity for the selected population). During 
the life of the classifier (designed to process data streams), we 
took snapshots of its state. Overall, 267 prototypes appeared, 
describing various clusters of the population. Appearance of a 
new prototype usually results in the removal of one or more of 
the existing prototypes, when the new one describes them well 
enough. Thus the number of prototypes reported in the 
snapshots varied between 5 and 20, and in the final there were 

19. Fig. 1 presents the distribution of the population into 
classes, and fig. 2 contains the probability profile of the most 
popular prototype. Notably, in our experiment the classifier has 
proven capable of identifying small clusters with distinct 
behavior patterns, i.e. users calling only from home and only 
their close contacts. 

In our experiments, the samples were not labeled. Different 
research endeavors that are enabled with this foundation can 
employ the Evolving Classifier for supervised learning – 
analysis of behavior prototypes together with other data. 

 

The contribution thus consists of: 

• A way to represent CDR and layers of information 
derived from it in the form of behavior vector 
sequences, in accordance with the Behavior 
Informatics framework 

• An example of a simplified method of estimating 
strength of relations, as well as inclusion of 
relation strength categorization into the BI 
framework 

• An example of the application of personalized 
location-tagging in the composition of the 
behavior vector sequence 

• A classifier that allows for dynamic discernment 
of behavior patterns within the population, also 
keeping track of the dynamics of behavior of 
individuals 

All of which may prove useful for research of sociological 
and psychological phenomena with the application of mobile 
phone datasets. 
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Sms transmission using phone users density
in big cities

Floran Berthaud1 , Yannick Léo1 , Carlos Sarraute2 , Anthony Busson1 ,
and Eric Fleury1

1Université de lyon, UMR 5668 CNRS - ENS Lyon - INRIA - UCB Lyon 1, IXXI
2Grandata Labs, Bartolome Cruz 1818 Vicente Lopez. Buenos Aires, Argentina

This work answers the question : is it possible to transmit a sms using phones as relay in a big city such as Mexico
City? We defined a simple transport protocol to transmit sms from a source to a destination. This protocol does
not need routing, it is based on locality of sms, the density of phones in Mexico City and mobility of phone users.
We studied a mobile dataset including 8 millions users living in Mexico city. This gave use a precise estimation
of the average transmission time and the global performances of our approach. After 30 minutes, half of the sms
were delivered successfully to destination.

The need of communicating in a dense city is always increasing. Every day, millions of sms are sent in a
big city like Mexico City. Phone operators have to adapt their infrastructures to provide an efficient service.
At present times, sms are not only routed with base stations. The way to communicate and exchange sms
between each other has become diversified these last years. We can now send messages with applications
like WhatsApp [1], Tango, Skype and Viber while connected to a wireless spot [4]. During rush hours,
the capacity of the operator service are almost saturated. It is becoming a great challenge to increase the
capacity of the service with the same number of relays.

In this study, we propose a new way to transmit sms and more generally data from a source to a destina-
tion. Instead of using classical routing, we use relays close to the source and phone users that are connected
to those local relays to reach the destination. A big advantage is that we do not perform a routing algorithm
as we do not need to know where the destination is. Moreover, as we only use local relays that are close to
the source, the bandwidth cost of a sms is smaller. On top of that, the density of phones and the mobility of
users are even higher when the capacity of classic relay network is challenged during rush hours.

Figure 1: Geographical heat maps of static network parameters : average number of base station hops (left),
average distance (middle) and global activity (right) around Mexico City. The Voronoi cell for a base station
represents the area in which users are connected to this base. The green colour represents low values and
the red one high values.
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Floran Berthaud , Yannick Léo , Carlos Sarraute , Anthony Busson , and Eric Fleury

We used a communication dataset [3] containing the mobile phone interactions of 8 millions of people
in Mexico City covered by 775 base stations that are part of the classic network. This anonymised dataset
contains sms and calls with some location information defined by the base station of the source and desti-
nation. Over three months, we managed to extract around 10 millions fully located sms for our study. Most
of the sms had Mexico City as source and destination.

Protocol and results
We analyzed our dataset through time and space for each base station. We showed the variability of the
global activity according to time. We noticed a constant activity for every base station, the distance between
two stations depends on the local activity. On figure 1, for each sms of the trace, we computed the distance
and the number of relay hops from the source to the destination base station. The average distance of sms
is constant whereas the number of relay hops is higher in the center where base stations are closer.

This study provides an empirical proof of the close proximity of messages. Many sms are very local with
a very small number of relay hops. We applied a neighboor protocol that consists in delivering the sms to
the phone users that are attached to the same base station when the source sends the sms. Then we let these
neighboors moving with the sms. If any of the neighboors reach the destination, the sms is delivered. If
after half an hour the message has not reached the destination, then the message is dropped. In our network,
one over three messages were delivered after 10 minutes and one over two after thirty minutes. As some
locations are missing in our dataset, in reality, the results are likely to be even better.

Figure 2: For each base station, we performed the ratio of local sms that had less than two relay hops (left)
and the ratio of sms that had successfully reached the destination by the neighboor protocol (right).
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1. INTRODUCTION
Mobile user trajectories are known to exhibit structural and tem-

poral regularities associated with the daily and weekly cycles of hu-
man activity. The spatial network formed by user movement, and
its topological characteristics in particular, have been explored in
recent research including the detection of urban neighborhoods [4],
place recommendation to mobile users [9], touristic route identifi-
cation [7] and a broad range of applications in epidemiology [1].

However, the majority of models of human mobility focus exclu-
sively on its spatial characteristics [2, 5, 11], and neglect both net-
work topology and temporal dynamics. More advanced computa-
tional methods proposed recently realize some of these aspects, for
instance by incorporating information about the users’ social net-
work [10] and their spatiotemporal dynamics [3]. The applicability
of these approaches is limited though, as they rely on complete
knowledge of a user’s historic whereabouts and social connections
as input, which might not be readily available in most domains.

The goal of this paper is to bridge the gap between universal
mobility models and complex computational methods in mobility
modeling. As opposed to tracking the whereabouts of individual
users, our key idea is to use the aggregate trajectories of users
between real-world places to define a network of venues in the
city. Using a longitudinal dataset from the location-based service
Foursquare we empirically analyze place networks in one hundred
metropolitan areas across the globe.

Figure 1 presents a visualization of the place network shaped by
the movement of Foursquare users in New York City. One can spot
hubs being formed at multiple areas across the urban plane, with
local transitions connecting them to nearby places and occasional
long jumps connecting places located further apart from each other,
for example when users move between Manhattan and Brooklyn.

Exploiting a set of insights on the growth patterns, temporal dy-
namics and topological properties of these place networks, we then
build a new human mobility model that accurately predicts the fu-
ture interactions between places in urban environments with mini-

mal parameterization and computational costs. Our work is articu-
lated into three parts:

Place network growth and temporal pattern analysis. We first
consider the temporal properties of place networks, and focus on
their growth over time in terms of edge and node addition pro-
cesses. In accordance with previous observations in online social
networks [6], we observe a densification pattern, as the number of
edges grows superlinearly to the number of nodes in the system. A
saturating effect for node growth is reached quickly nonetheless,
when the large majority of Foursquare venues is added to the net-
work. It takes almost 10 weeks for mobile users to crowdsource a
large fraction (more than 95%) of public places in a city. Subse-
quently, we compare instances of place networks across consecu-
tive time windows of observation; we find that a significant num-
ber of new links are generated over time as users form new spatial
trajectories when they navigate between places. The set of places
that generate those edges, however, remains remarkably stable over
long periods of time. These results reveal the importance of view-
ing connections as fleeting entities that emerge dynamically in the
network.

Topological properties of place networks. We then empirically
analyze the topological properties of place networks. We make
two key observations: first, we note that place networks exhibit
the well-known characteristics of social networks such as heavily
skewed degree distributions, scale-free properties, small-world be-
havior and high clustering coefficients. We trace this relationship
to the inherent inter-dependence between mobility and social link
formation in geographic space [10, 3]. In contrast, we also find
a striking difference compared to social networks: they show a
resemblance to the web graph presenting a balanced assortative
mixing pattern with hub nodes connecting to each other but also
to low degree nodes. This non-social property arises from the dif-
ferent roles played by places in the network, and in particular the
existence of travel spots, such as train stations or airports, acting
as intermediate hubs between nearby places, e.g., food places, the
most frequent place type in the network, typically characterized by
low degrees. These characteristics are consistent across one hun-
dred cities.

A new gravity model for link prediction in place networks. Fi-
nally, the turnover of links in the network over time motivates the
following prediction task: given past observations about the con-
nectivity of public venues in Foursquare, we would like to predict
the pairs of places that are likely to connect at a future time. Can-
didate prediction models need to rank highly the pairs of venues
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Figure 1: A visualization of the place network for New York City
at 11pm. Each dot represents a user traveling between venues, and
is color-coded by the category of the destination with blue being
nightlife and green being food. We clearly see the edges of the
network formed by people moving between places.

that are most likely to interact, a task complicated by a number of
challenges. In particular, the highly volatile, time dependent, link
generation process and sparse data setting may hinder the use of
complex prediction algorithms that can be prone to overfitting. The
inherently spatial embedding of the network suggests the need for
models which integrate appropriately geographic distance as a fac-
tor. We therefore develop a generalization of gravity models [2, 5,
8], popular in the mobility and transport literature, where we incor-
porate the temporal aspects of the system: the model combines in-
formation on venue synchronization in terms of user activity, in and
out-bound movement towards places and geographic distance. In
practice, it captures the observation that nodes may act as sources
or sinks of users in the course of time, depending on their cycle
of activity. Finally, it incorporates information about the interac-
tion of places on the network level, a valuable aspect of attraction
that has been ignored by past mobility modeling approaches. The
ranking strategy put forward by the model outperforms by at least
two points in the Area Under the Curve (AUC) score even popular
supervised learning algorithms and by a large margin the model ad-
hering to the standard formulation of gravity in the literature (AUC
score 0.905 versus 0.811). This is achieved with minimal require-
ments for training and optimization, making it ideal in practical ap-
plication scenarios where expensive computations can pose a trade-
off against the real time demands of many mobile applications.

2. NETWORK GROWTH AND DYNAMICS
Network densification is a fundamental phenomenon in network

dynamics and relates to the different rhythms with which nodes
and edges are added to the network. Previous work by Leskovec
et al. [6] characterizes empirically the densification process in on-
line social and technological networks showing that the number of
edges grows superlinearly with the number of nodes in the network.
Specifically, given the number of nodes n(t) observed at a point in
time t, one is interested in the number of edges e(t) and the way
this relationship forms as t grows. Formally we have:

e(t) ∝ n(t)α (1)

Different values of the exponent α, imply differences in the ex-
pected number of edges over time. A graph with α = 1 maintains

100 101 102 103 104 105

Nodes

100
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103

104

105
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Los Angeles
San Francisco
x1.14

Figure 2: Number of edges versus number of nodes in Los An-
geles and San Francisco as the cities become crowdsourced by
Foursquare users.

a stable average degree over time, whereas α > 1 corresponds to an
increase in the average degree. The findings reported in [6] suggest
that the latter is the case in many real world networks and here we
investigate whether it holds also in urban place networks. We pick
a random point in time t0 where we begin monitoring the evolu-
tion of a place network and then measure the number of new nodes
and edges added by users sequentially. Figure 2 shows the num-
ber of edges versus the number of nodes, in log-log scale, in the
cities of Los Angeles and San Francisco, as venue information in
these cities becomes crowdsourced over time by Foursquare users.
Initially the number of links grows superlinearly with the number
of nodes. We have measured using the least squares optimization
method an exponent α = 1.14 with a standard deviation ±0.06
across a set of one hundred cities. However, at a specific city size-
dependent threshold, this scaling breaks, as the number of nodes
ceases to increase whereas new links continue to appear. At that
point, a majority of places have been discovered by the users, and
finite-size effects induce a slowing down of new place discovery.
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The Effect of Geographical Proximity on Mobile Communication

Hyungtae Kim Tony Jebara
Columbia University Columbia University

1 INTRODUCTION

Geographical proximity can significantly influence
communication patterns. At small scales, proximity
faciliates face to face interaction and relationships are
naturally formed between individuals that coincide in
similar public spaces as well as work places. A user’s
location pattern has been shown to be highly corre-
lated with the pattern of his neighbors in a social net-
work [4] .Call detail records (CDRs) have been used to
study a variety of user behaviors such as the statistics
of location patterns [2] and the probability of commu-
nication given a distance or proximity between pairs of
users [3] . The correlation between user proximity and
social connectivity have also been studied using social
networks endowed with IP-based geolocation [1]. This
article analyses a large data-set of location-augmented
call detail records (LACDRs) to more precisely charac-
terize the influence of geographical proximity on com-
munication frequency and the length of average com-
munication time.

2 DATA

The data-set under consideration is a large LACDR
data-set that represents the majority of users in an
undisclosed city-scale region. The data is sampled each
time a communication is performed by one of the users
which includes phone calls and SMS messages. Each
such event generates a record containing the event-
type, a start time, the end time as well as the GPS
location. The data set spans approximately 2.3 mil-
lion devices over a period of one month and contains
approximately 300 million distinct communication and
location events. Devices are given a unique ID which
is derived from anonymizing the phone number associ-
ated with the device. This renders the devices uniquely
identifiable (up to telephone number changes which we
assume occur with limited frequency in the data-set).
The GPS coordinates have also been transformed us-
ing a translation and a rotation such that distances
between pairs of geographical points are preserved.

# of Calls
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Average Distance vs. # of Calls

Figure 1: Average Distance vs. Number of Calls. The
number of calls were grouped by buckets of 10 and the
distance was averaged for each bucket.

3 METHODOLOGY

With the LACDR data spanning n devices, a sparse
n×n matrix X is constructed to represent the weighted
communication graph of the devices. Let X(i, j) be
the number of communication events between device i
and j. Both SMS messages and phone calls are con-
sidered communication events. Through X, we have
a surrogate measure of the degree of social interaction
between pairs of individuals.

To analyze the average calling time, a sparse n×n ma-
trix A is estimated from data. Therein, A(i, j) is the
average time spanned by each communication event
between device i and device j. The scalar A(i, j) is
calculated by dividing the total (undirected) commu-
nication time between i and j by the total number
communication events between device i and device j.
Fo A, only phone call events are considered since our
SMS records do not convey duration or extent of com-
munication.

The location history of the devices consists of the
GPS coordinate along with a timestamp of when the
coordinate was recorded. For device i, let Yi =
{Y1,i, Y2,i, . . . , YTi,i} where each YT,i ∈ R3 is a three-
dimensional vector containing the latitude, longitude
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and event of the t’th event generated by device i. Ev-
ery device is considered stationary at is previously re-
ported location until the a new location is observed.
This interpolation allows us to efficiently compute a
measure of average proximity and the time spent at
that proximity for a pair of devices. All static prox-
imity computations were performed using the Haver-
sine forumla between the GPS coordinates of two de-
vices. The average distance between two devices is
then calculated as a weighted average of the Haver-
sine distances each weighted by the amount of time
spent at that distance. The average distance between
two users (or devices) i and j (or their average prox-
imity) is stored as element D(i, j) in a sparse matrix
D. It is important to maintain a sparse representa-
tion of the n × n D matrix since n is so large. We
therefore explicitly computed the distances precisely
for pairs of users which communicated at least once
(i.e. we apply the sparsity pattern in X to the D ma-
trix). For the non-communicating pairs, we estimate
the distances through random sampling rather than
exhaustively enumerating all possibilities.

4 RESULTS
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Figure 2: Relationship between Distance and Number
of Calls.

The regression analysis of C in Figure 2 shows that
the average distance between two devices decreases as
the number of communication events increases. A lin-
ear relationship between log(distance) and log(calling
frequency) provides an especially good fit for this phe-
nomenon.

Analysis of A in Figure 3 provides insight into an-
other relationship. The average call time increases as
the average distance between devices increases. This
emperical result hasn’t been previously studied to our
knowledge.
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Figure 3: Average Call Length vs. log(Average Dis-
tance). The distances were rounded to the nearest
kilometer before the log function.

5 CONCLUSION

In this article, we present emperical evidence of two so-
cial phenomenons in the LACDR data set. Our analy-
sis shows that individuals communicate with those in
their close proximity with greater frequency than those
further apart and the average communication time in-
creases as the distance between two devices increase.
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How mobile positioning data can contribute to urban geography: measuring ethnic 

segregation in daily activity spaces in Estonia 

Rein Ahas1, Siiri Silm1, Erki Saluveer1,2 

1 Department of Geography, University of Tartu, Estonia, rein.ahas@ut.ee, 
http://mobilitylab.ut.ee/eng/  

2 Positium LBS, Estonia 

 

The aim of this presentation is to introduce the theoretical and methodological 

aspects of using passive mobile positioning data in studying ethnic segregation. Passive 

mobile positioning data is secondary data, which is recorded in various phone use logs, 

for example, the Erlang data of mobile phone data (1) or Call Detail Record (CDR) data 

(2) is used. The presentation is based on two academic articles on the ethnic segregation 

analyses in Estonia.  

Ethnic segregation as spatial separation of some population groups from others is one of 

the most important population processes in urban areas (3). Segregation of minorities is usually 

deemed to be negative because the isolation is associated with problems in education, 

employment, poverty, safety, and health care (4). A traditional analysis of segregation on the 

basis of a study of activity places (residence, place of work, leisure) may not show the complete 

picture of the population processes because the activities may take place across many different 

places or activities (5). 

Thus, researches have increasingly highlighted the need to study segregation in the whole 

extent of the places of activity of people and in the whole extent of the 24-hour activity cycle 

(6,7). Such studies are becoming possible and interesting in connection with taking into use of 

various modern tracking data, which enable to observe people ubiquitously in time and space. 

The use of such data is limited by many restrictions related to the right of use of the data and 

privacy. There are also huge methodological and theoretical challenges. How to enrich 

quantitative tracking data to a level interesting to modern social sciences? How to make space-

time tracking data statistically processable? How to interpolate them spatially and temporally?  

For the first case, we will be introducing the use of mobile data in studying the temporal 

differences in the use of urban space.  
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Original paper was published in Social Science Research in 2014 (8). The objective of 

this paper was to determine the temporal dimension of ethnic segregation in Tallinn. We used 

the CDR data over the course of three years to study temporal segregation levels in urban space 

through the day, the week, and the year.  

The methodological challenge of the analysis was aggregation of the mobile network 

operator’s (MNO) CDR data into units of suitable temporal and spatial accuracy. It is necessary 

to select units of time of the most suitable length and units of the space of the most suitable 

size. This also depends on the number of respondents in the CDR database and the number of 

calls made by them.  

As result of methodological development of data enrichment algorithms we measured 

segregation for three-hour periods in city district level using traditional segregation indixes – 

the index of dissimilarity (ID) and the location quotient (LQ) method – and compared the results 

with residence-based indices based on 2000 census data.  

 

 

Figure 1A. The index of dissimilarity during the day compared to the places of residence by 

census data. 
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Figure 1B. The index of dissimilarity during the week compared to the places of residence by 

census data. 

 

 

Figure 1C. The index of dissimilarity during the annual cycle compared to the places of 

residence by census data. 

 

 

The results indicated that the locations of people are more segregated at night, with 

considerably less segregation during the daytime (Figure 1A). The segregation is significantly 

lower on workdays compared to weekends (Figure 1B). Segregation is also lower during 

summer holidays compared to the winter working period (Figure 1C). The results show that 

although places of residence are segregated, different ethnic groups use the city together during 

the day, which increases the potential for interethnic contacts. The results demonstrate also that 

temporal segregation based on mobile-phone use are considerably lower than segregation of 

places of residence that are derived from the census. 

 

For the second case, we will be introducing the use of mobile data in studying ethnic 

variations occurring in the space usage. The original paper was published in the Annals of 

Association of American Geographers in 2014 (9). The aim of the article was to find the 

differences in the leisure time space usage of ethnic groups. From the theoretical perspective, 

this is an interesting challenge, because people spend the majority of their time at home and at 

work and thus researches have studied these anchor points most. However, many researchers 

claim that ethnic and social differences gain their true meaning outside of the routine, e.g. 

outside of the daily places of activity and in the course of leisure time activities. Then people 

get to choose with whom and where they go.  

2015

87

C
o

n
fe

re
n

ce

S
e

ss
io

n
 4

 ::
 S

o
ci

e
tie

s 
(I)

S
e

ss
io

n
 3

 ::
 E

co
n

o
m

ie
s

S
e

ss
io

n
 2

 ::
 C

iti
e

s 
(I)

S
e

ss
io

n
 1

 ::
 M

o
b

ili
ty

S
e

ss
io

n
 5

 ::
 S

o
ci

e
tie

s 
(II

)

S
e

ss
io

n
 6

 ::
 C

iti
e

s 
(II

)

S
e

ss
io

n
 7

 ::
 C

ro
w

d
s

P
o

st
e

r 
S

e
ss

io
n

 1
 ::

 A
p

ril
 8

P
o

st
e

r 
S

e
ss

io
n

 2
 ::

 A
p

ril
 9



4 
 

From the methodological perspective, the challenge of this study is to develop an 

algorithm which would enable to distinguish home, the place of work, and the places of leisure 

time space usage from the CDR data. For the theoretical basis, we used the “out-of-home non-

employment activities” (10) concept of travel behaviour researchers, and developed a special 

algorithm to find it from the CDR data. This is based on the anchor points model with the help 

of which we can find regularly visited places, home, work and other anchor points. 

Development of the anchor point model was based on a survey (11). Using the different spatial 

units of GIS databases, we developed an algorithm with the help of the elimination method, 

which extracts the places of activity that can be defined as out-of-home non-employment 

activity places from the CDR data. Based on the analysis of these places of activity, we 

conducted a statistical analysis to find ethnic differences. 

 

 

Figure 2A. Differences in districts in Tallinn visited by Estonians. 

 

Figure 2 B. Differences in districts in Tallinn visited by the Russian-speaking minority (B). 

 

The results show that ethnicity has a significant influence on the leisure mobility of individuals. 

The biggest differences between the two population groups occur in Estonia outside the 
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respondents' home city of Tallinn. The Russian minority were found to visit 45 percent fewer 

districts in Estonia (excluding Tallinn) than Estonians. Moreover, they exhibit a preference for 

districts in Tallinn and Estonia generally that are more heavily populated by the Russian-

speaking population. With respect to international travel, the Russian-speaking minority visit 

fewer countries and have a 3.6 times higher odds of visiting former Soviet Union countries than 

Estonians. The space usage in out-of-home non-employment activities have fewer differences 

between the two groups in Tallinn. Overall, our results show that ethnic differences has less 

effect on everyday space usage and a greater influence on the choices made regarding long-

distance travel (Figure 2A and 2B). 

 

Having introduced the two approaches to using mobile data in examining a “classic” 

social science problem, the generalising part of this presentation will discuss the challenges 

involved in using mobile data. The results showed that by using digital behavioural data, it is 

possible to discover new aspects of segregation and further develop the theoretical approach to 

segregation. Segregation at the place of residence can be related to inertia and the residential 

property market, people may have many interethnic contacts on the daily basis. Everything also 

depends on the scale of the city and the functionality of the urban space. A certain warning sign 

of “ghettoization”, however, is the encapsulation of all of the people’s trajectories over 24 hours 

in their neighbourhood or places connected to the same ethnic group. This dimension must not 

necessarily be ethnic, social isolation and financial stratification have the same effect.  

From the methodological perspective, we will be discussing the advantages arising from 

using the data and the limitations arising from the peculiarity of CDR data in conducting such 

urban geographical researches. A reasonable amount of theoretical task setting and 

methodological courage enable to develop data processing algorithms, which make the CDR 

data of little promise at first sight interesting even for a more demanding researcher.  
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Abstract—Billions of applications have already been 
downloaded by smartphone users. To successfully download an 
application, the application asks the user to accept a set of 
permissions allowing it to access sensitive information on the 
phone. It is mostly unclear when such data is being accessed, 
how it is being used, and for what purposes. A framework 
called openPDS, was recently suggested to limit such privacy 
invasion. openPDS gives the user full control over her data and 
only allows access to the data/metadata via safe answers. 
Although openPDS protects the user’s raw data, sensitive 
personal information, such as location trace, can still be 
inferred by the service provider by analyzing the accumulated 
answers. In this work, we focus on location privacy and 
append openPDS with a module that prevents the service 
provider from reconstructing the trace of users. The module 
might provide a correct answer, a wrong one, or might not 
answer at all. However, the module guarantees quality of 
service (QoS) by abiding with the QoS requirements 
necessitated by the provider, which we define as the tolerance 
of the application to inaccurate answers. We tested our 
approach on 10 users whose locations traces were recorded for 
10 months. The results show that no user trace was successfully 
reconstructed even when high QoS levels were required. 
Moreover, the adversary knowledge gained through the 
recurrent months was not maintained.  

Keywords-component; openPDS; location privacy; 
smartphones; mobile apps 

I.  INTRODUCTION AND BACKGROUND 
Mobile phone, these little devices we carry around pretty 

much 24/7, are probably the most ubiquitous behavioral and 
locational sensor currently available. A recent study by 
CNIL [1], the French data protection authority, showed that 
22% of Android and 31% of iOS applications are getting 
permission to access our location at any point in time.  

While many of these applications access location data for 
legitimate purposes, the proliferation of raw and large-scale 
location databases is a source of concern; 62% of Americans 
consider data about their exact location to be moderately or 
extremely private [2], and research has shown that it is easy 
to re-identify individuals in simply anonymized mobility 
dataset.  

Numerous solutions have consequently been developed 
to protect the privacy of individuals on smartphones [3-8]. 
Aquifer [3] protects the user from unwanted information 
disclosure that is permitted to applications by controlling the 
data access after each interaction with the server provider. 
This is done by designing applications that present to users a 

clear flow of their information and adds restrictions to data 
accesses that appear to it as unlawful. Authors in [4] suggest 
market-aware privacy protection framework that includes a 
feedback control loop that adjusts the mobile privacy settings 
based on the monetary revenue generated by advertisements. 
MockDroid [5] and AppFence [6] exchange sensitive data 
with fake ones, for example, by submitting fake GPS 
coordinates for an application requesting them; however, it is 
not location specific and works for other data as well. 
TaintDroid [7] monitors the flow of privacy-sensitive data 
and identifies potential misbehavior by third-party 
applications. Other solutions such as the ones in [8-12] 
protect the user from specific attacks and target specific data. 
However, these solutions are so extreme to the extent that 
they do not permit service providers from accessing 
historical data, or incorporating temporal factors [13], 
making their approach less practical especially for 
applications that target data-science statistics and findings. 
Yet, other approaches achieve privacy by protecting the user 
identity within a group (mix-zone) using approaches similar 
to k-anonymity [14,15] (or its variants), or by obfuscating 
spatial or temporal location related data [16]. 

openPDS/SafeAnswers [17], on which our solution is 
based, takes a different approach. In short, location 
information about where a user was and is, is collected and 
stored under his control on his PDS. The user can then allow 
applications to ask questions, in the form of code, to his 
PDS. For example, an application might want to know 
whether a user is currently on AUB campus. In this case, the 
code sent by the application would be run in a sandbox and a 
yes/no answer will be generated depending on whether the 
user is on AUB campus or not. The fundamental difference 
between openPDS and other solutions is that openPDS 
allows users to use and answer questions using their full 
mobility trace without sharing the raw data.  

Although openPDS never shares raw mobility data, a 
malicious application might try to infer more information 
through a specific sequence of questions-answers. For 
instance, openPDS does protect the user from having the 
application provider know her exact location at a certain time 
instance. In its current form, however, it does not have a 
module to prevent the application provider from inferring the 
mobility trace of the user after a certain number of questions-
answers.  

We here propose such a module for 
openPDS/SafeAnswers. The module processes location 
related questions, whether a user is or is not within a given 
region, by telling the truth, lying, or by not providing an 
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answer. Our module prevents application providers from 
inferring a user’s trace while ensuring a good quality of 
service. We here define quality of service (QoS) as the 
percentage of wrong/no answers the application can tolerate. 
This percentage can be anywhere between 10% and 100%. 
We also define privacy to be the percentage of knowledge 
gained about the user’s mobility. This privacy metric will be 
quantified in section II.  

The module works as follow: the module records 
questions that have been previously asked by the application 
and creates spatiotemporal profiles of both, what the 
application knows and that of the actual user. Both 
spatiotemporal profiles are created using first-order Markov 
mobility chain. Using these profiles, the module can decide 
on providing or not a correct answer. Whether the module 
provides an answer is a trade-off between the QoS and the 
maximal difference between the adversary’s profile and the 
actual profile, which actually translates to privacy level. If 
the question is answered, the spatiotemporal profile of the 
adversary is updated. This process is repeated for every 
question. It is to be noted that the location privacy problem 
we are tackling here is different than the traditional location 
privacy problems mentioned before where the privacy 
approach relies on achieving anonymity within a group by 
using k-anonymity [14,15] or its variants, obfuscating 
temporal and spatial information related to locations, tainting 
private data, or protecting against specific attacks. Our 
approach however is user-centric that balances between QoS 
and privacy and poses no restrictions on data needed by the 
application. 

We tested our proposed location privacy method on the 
mobility traces of 10 students in the American University of 
Beirut over the course of 10 months. Results show a good 
privacy level with high QoS. Our module successfully 
prevents an adversary from accumulating knowledge about a 
user’s location across time. 

II. LOCATION PRIVACY MODULE 
As a first step, we create spatiotemporal profiles 

(mobility profiles) of the user P!"#$   and of the application 
as it is learning from the recurrent questions-answers across 
time (we call this profile P!"#$%&!%'). Both spatiotemporal 
profiles are created using first-order Markov mobility chain. 
Based on the notion that users act similarly in the same time 
period of the day, we integrate the time domain in the 
mobility profile as done in [16].  The week is divided into 
four time periods, three for weekdays (morning – 7 to 11 am, 
noon – 12 to 6 pm, and night – 7:00 pm to 6:00 am) and one 
representing weekends. The spatial resolution considered in 
the mobility profile is as coarse as city level; for example, we 
consider the area Hamra (AUB campus included) as visited 
location instead of AUB campus. It is to be noted though that 
our approach allows the application to ask at anytime using 
any spatial resolution. Each state s of the mobility chain is 
thus the spatiotemporal event of the transition, which is the 
combination of the visited location with the particular time 
period. An example of a state s is the probability of a user 
being in Beirut (location) in the morning (time period).  

Since the profile is regular and aperiodic, based on the 
Ergodic theorem, the profile (the first-order Markov mobility 
chain) will converge to a unique steady state distribution π. 
Each entry π s   in π is the presence probability of the user in 
state s  i.e. each entry represents the percentage of a user 
being in location x at time period t. Our objective is to 
answer the adversary in such a way to keep the distance 
between the stationary distribution of the adversary model 
π!"#$%&!%'  and that of the real profile π!"#$  the maximum 
possible, knowing that this will lead to distinct profiles and 
hence different traces, which is confirmed in the 
experimental results. 

Since the adversary gains his knowledge from the 
questions he poses, the next step is to update the adversary’s 
stationary distribution based on the answer provided by the 
location privacy module. Three kinds of answers can be 
provided by the privacy module: true, false, and no answer. 
We consider an answer to be true if it is correct, and false if 
it is a noisy one. When not answering, we are sure that the 
attacker is learning nothing, while when submitting an 
answer, the attacker is not sure if the submitted answer is 
correct or noisy. Hence, noisy answers will help in 
misleading the adversary. Going forward, we propose having 
three privacy zones: Favorable, Steady, and Danger. We 
categorize the user to be in a Steady zone if the states in 
π!"#$%&!%' are uniformly distributed with a small tolerance, 
which means that the attacker cannot infer the user’s 
location. If both π!"#$%&!%'  and π!"#$  include a peak at 
location i in time period t, and the adversary’s question in 
time period t is whether the user is in location i or not, and 
the user is actually in i, the zone is considered Danger, 
because the adversary is getting closer to the actual most 
visited location by the user in time period t. Otherwise, the 
zone is considered Favorable. If the user is in a Favorable 
zone f, the privacy module tends to answer truly more often 
than false, for example T! =85%, F! = 10%   and N! =5% 
where T!, F!, and N!   are the percentages of answering truly, 
falsely, and not answering. If the user is in a Danger zone d, 
the privacy module tends to answer falsely more often than 
truly, for example T!=45%, F! = 50%  and N!=5%. If the 
user is in a Steady zone a, the privacy module tends to 
answer in a way to satisfy the required QoS, for example 
T!=70%, F! = 25%  and N!=5% when the QoS is 70%, 
which means that the location privacy module will answer 
truly 70% of the time.  For the QoS to be respected, the 
following inequality should be enforced 

𝑑𝑇! + 𝑓𝑇! + 𝑎𝑇! ≥ 𝑄 
where d, f, and a are the normalized number of times the user 
enters into Danger, Favorable, and Steady zones 
respectively, and Q is the percentage of true answers 
generated by the privacy module. 

Instead of fixing the percentages of answering true, false, 
or no answer in every zone, we resort to calculate these 
percentages based on an optimization problem where we aim 
at maximizing the distance between π!"#$%&!%'  and π!"#$, as 
follows: 
𝐹! 𝜋!"#$ −   𝜋!"!"#$%#&  !   

!

!
+   𝑇! 𝜋!"#$ −   𝜋!"#$%&!%'  !   

!

!
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where F!  and T! are the optimization variables representing 
the percentages of answering falsely or truly given zone z, 
and π!"#$%&!%'  ! and π!"#$%&!%'  !  are the stationary distributions 
of the adversary knowledge after answering falsely or truly 
(discussed next). The optimization problem is subject to 
𝑑𝑇! + 𝑓𝑇! + 𝑎𝑇! ≥ 𝑄, where Q is a given percentage (QoS 
constraint).  

After obtaining the optimal percentage 𝑇! and 𝐹! in every 
zone z, we need to update the adversary’s knowledge based 
on the answer provided by the privacy module, as follows: 

𝜋!"#$%&(𝑖) =

𝑇!, 𝑞 = 𝑖  𝑎𝑛𝑑  𝐴𝑛𝑠𝑤𝑒𝑟 = 𝑡𝑟𝑢𝑒
𝐹!, 𝑞 = 𝑖  𝑎𝑛𝑑  𝐴𝑛𝑠𝑤𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒

𝑇!  𝜋!"#$%&!%' 𝑖
1 − 𝜋!"#$%&!%' 𝑞

, 𝑞 ≠ 𝑖  𝑎𝑛𝑑  𝐴𝑛𝑠𝑤𝑒𝑟 = 𝑡𝑟𝑢𝑒

𝐹!  𝜋!"#$%&!%' 𝑖
1 − 𝜋!"#$%&!%'(𝑞)

, 𝑞 ≠ 𝑖  𝑎𝑛𝑑  𝐴𝑛𝑠𝑤𝑒𝑟 = 𝑓𝑎𝑙𝑠𝑒

 

where, π!"#$%& is what the adversary is going to learn, i is 
the location the adversary is learning about, and q is the 
location the adversary is asking about (hence, i and q are 
indices in 𝜋).  

Having determined the knowledge gained by the 
adversary after the submitted answer, we update the 
adversary profile (P!"#$%&!%') by updating all the possible 
transitions (pt)  in P!"#$%&!%' that could have been made to 
reach the current period. The new adversary profile is thus 
calculated as follows: 

P!"#$%&!%' =    (P!"#$!"#$!"# pt
!"

!"

∗    π!"#$%& i ∗  
!

P!"#$%!&'
!"#$ (pt, i)) 

 
where P!"#$%!&'

!"#$ (pt, i) is the adversary profile with only the 
element at (pt, i)  incremented by one transition. A new 
stationary distribution π!"#$%&!%' is then calculated from the 
updated  P!"#$%!"#$. The same steps are repeated every time a 
new answer is given. After every answer, we quantify the 
privacy level of the user. In a given time period, the user’s 
top visited location is identified, meaning that the most 
visited location in a specific time period in π!"#$%&!%' is the 
same as the most visited location in the same time period in 
π!"#$. We consider a user’s most likely trace to be exposed or 
breached (privacy level) if the adversary was able to identify 
the top visited location in each period of the available four 
periods. The more locations identified, the higher the privacy 
breach.  

III. EXPERIMENTAL RESULTS 
Ten student volunteers from AUB were provided with an 
Android application to record their traces for a period of 10 
months. 6 months were used to build their real profiles 
( P!"#$ ). The other 4 months were used to test the 
effectiveness of the privacy module. Since there are no clear 
statistics to indicate the number of questions a normal app 
might ask and at what rate, we assumed that the application 

would ask, on average, 12 questions/day. Every question 
asks about a location i.e. are you in location X? X can be any 
location that the user visited in the past, in addition to other 
locations that the user might visit. In our experiments we set 
the number of locations to 10. Hence, the maximum number 
of locations visited by our volunteers was 6. The aim of the 
location privacy module is to provide answers to the app 
within the corresponding QoS limitations while achieving a 
good privacy level (few locations identified as mentioned in 
the end of section II). 

We considered two types of adversaries: Regular and 
Malicious. A Malicious adversary targets in his questions the 
top visited locations by the user in each time period based on 
his findings. For example, if an attacker noticed that 80% of 
a user’s presence in morning is in location x, the adversary 
will target this location. Questions about such locations will 
be increased in number and rate. Consequently, he can 
identify the user trace faster. On the other hand, a Regular 
adversary does not bias his questions.  

We tested our privacy module using three QoS levels: 
70%, 85%, and 90%. In total 6 experiments were conducted 
by switching between the regular and malicious adversary 
and the various QoS levels.  

After each month of testing, we calculate the average 
number of locations identified for a user by the adversary. 
Since the maximum breach is to identify the four most 
visited locations by the user, we calculate the average as 
follows: 

!∗!"#$%&  !"  !"#$"  !"#!  !  !"#$%&"'(  !"#$%!&!#"  !"  !  !"#$%  !"#$!!
!!!

!"!#$  !"#$%&  !"  !"#$"
. 

To know the maximum breach level for a user profile 
reached by the adversary throughout the whole testing 
period, we report the highest breach level reached across the 
months by both malicious and regular adversary. Figure 1 
shows the maximum an adversary (Malicious or Regular) 
can know (highest breach level reached) vs. the 3 QoS levels 
used. As shown, our privacy module achieved 60% privacy 
level with 90% QoS level (40% breached). We can notice 
that as the QoS increases, the privacy level decreases. 
Moreover, results show that profile knowledge acquired by 
the adversary in one month is not maintained in the 
following months. This is in part due to the lying strategy 
adopted by the location privacy module when the user is 
categorized to be in a danger zone. 

 

 
Figure 1. Max privacy breach level vs. QoS level 
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In conclusion, regardless of the adversary type and the 
QoS level used, the adversary was only able to know 
maximum 40% of a user profile on average, after 4 months. 
We can deduce that the adversary cannot maintain the 
knowledge achieved across time, and hence the locations 
that were identified were identified based on pure luck and 
this will remain the case throughout the months to come.  
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Characterizing preferences and returns in human
mobility

Hugo Serrano∗1, Fernando Buarque de Lima-Neto†2,
Alexandre Evsukoff‡3, and Ronaldo Menezes§1

1BioComplex Lab, Computer Science, Florida Institute of Technology, USA
2Computational Intelligence Research Group, Polytechnic School of Pernambuco, Brazil

3COPPE, Federal University of Rio de Janeiro, Brazil

In the past few years, our understanding of the fundamental laws of human mobility
has improved considerably thanks to the increasing availability of time-resolved human
mobility data, such as Call Detail Records (CDRs) [3, 7], credit card transactions [6] and
location-based services [4, 2] data.

One fundamental characteristic of human mobility, called preferential return (PR),
was proposed by Song et al. [11] and it models the strong tendency of humans to return
to previously visited locations. More precisely, it defines the probability Πi for returning
to a location i as Πi = fi, where fi is the visitation frequency of the location i. It implies
that the more visits a location receives, the more visits it is going to receive in the future,
which in different fields goes by the names of Mathew effect [8], cumulative advantage [9],
or preferential attachment [1]. Although the focus of the PR mechanism (as part of the
Individual Mobility–IM model) was to reproduce some of the scaling properties of human
mobility, its general principles are grounded on plausible assumptions from the human
behavior point of view.

However, in the long-term, the PR assumption as a property of human motion leads
to two discrepancies. First, the earlier a location is discovered, the more visits it is going
to receive. Or, in other words, the first visited location will always be the most visited
one. Second, if the cumulative advantage indeed holds true for human movements, people
would never change their favorite restaurant, change jobs or move to a different city, which
is clearly not true.

In this work, we explore the visitation return patterns under a temporal perspective.
We analyzed different ranking approaches and tested their respective correlations with
the return probabilities. Our approach is based on the premise that the longer the time
since the last visit to a location, the lower is the probability of observing a user at this
location [11, 3], as depicted in Fig. 1A. The proposed approach overcomes the those

∗hbarbosafilh2011@my.fit.edu
†fbln@ecomp.poli.br
‡alexandre.evsukoff@coc.ufrj.br
§rmenzes@cs.fit.edu
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two limitations of the PR mechanism by giving a higher importance to recently visited
locations.

Our findings are based on the analysis of 6 months of anonymized mobile phone data
from Brazil,1 The fundamental question our approach answers is: from the visitation
frequencies point of view, what is the most likely destination of a person? One of the
most visited places but whose last visit was a long ago, or a recently discovered place?

To answer these questions we compared two different visitation ranks, one based on
the visitation frequencies (kf ) and the other based on the recency (ks), measured as a
function of the elapsed time (i.e., number of steps) since the last visit to a location. Both
ranks were measured in a rolling basis from the accumulated sub-trajectories. The most
visited location will have kf = 1 whereas the most recently visited location will have a
rank ks = 1. For each return, we collected both location ranks. For instance, a return
to the 10th most visited place right after visiting it is accounted as the pair (kf = 10
, ks = 1). Conversely, a return to the most visited place (e.g., home) after 10 steps is
represented by (kf = 1, ks = 10).

When we look at the distribution of the two variables, we can see that most of the
returns are concentrated to recently and frequently visited locations (Fig. 1B). As we
can see, both rank distributions can be better approximated by similar truncated power
laws. The lower limits of the heavy-tails ( ksmin = 4 and kfmin = 2) suggest that the
visitation patterns to the most visited location and the last 3 steps in human trajectories
are different and deserve further investigation.

Inspecting the returns heat map (Fig. 1C) we can see that even though the two
variables are positively correlated, for the most visited sites (first column of the heat
map) the return data points are heavily clustered around low ks values, indicating that
sub-trajectories starting and finishing at these locations are much shorter than of the
other points. It is consistent with human travel patterns: on a daily basis we tend to
return back to home [5, 10]. On the other hand, when it comes to the recently visited
locations, the data points corresponding to ks ≤ 3 (bottom-most rows in the plot) span
over a large range of kf values, supporting our hypothesis that the most recent visits
have an important role in determining our future steps. Not surprisingly, the particular
range of values of ks corresponds to recurrent visits to low-ranked locations which is the
expected outcome of long-term changes in users’ visitation patterns, such as due to a
relocation or new visitation preferences.

To measure to what extent users tend to return to recently-visited places, we defined
Πs(r) = p(kf = r | ks = 1) as the probability of returning to the rth most-visited location
right after visiting it (ks = 1) and Πf (r) = p(ks = r | kf = 1) as the probability of
returning to the most visited location (kf = 1) after r steps since the last visit to it.

The next step is to compare these two probabilities and how they vary with r. For
such we defined ρ(r) simply as

ρ(r) =
Πs(r)

Πf (r)
=
p(kf = r | ks = 1)

p(ks = r | kf = 1)
. (1)

A ρ(r) > 1 suggests a preference for recently visited locations. On the other hand,
p(r) < 1 implies that Πf (r) > Πs(r) and hence a preference for highly visited locations.

1Approximately 8.9 million records of 30,000 randomly sampled users from one of the largest phone
carriers in Brazil.
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Figure 1: Return characterization A. Return probabilities as a function of the elapsed
time ∆t since the last visit. Peaks are observed at 24h intervals, capturing the temporal
regularity of which humans return to previously visited locations. Also, it is possible to see
that the return probability decays very quickly as the time increases, which corroborates
with our main hypothesis. B. Return ranks (probability density function). Both
distributions can be better approximated by truncated power laws (dashed lines). The
recency-based rank has exponents αKs = 1.64 and exponential cut-off κKs = 40.94 ,
whereas the frequency-based rank distribution has a better fit for αKf

= 1.86 with κKf
=

36.88. C. Return ranks. Each point represents a return step, whereas the color encodes
the density of points. This plot represents the probability of returning to a location of
rank kf = Kf and ks = Ks. D. Recency over frequency. From the empirical data,
we can see that a recent visit to place increases significantly the probability of returning
to it. That is true especially for locations with kf ≥ 4.
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The case where ρ(r) = 1 means that both ranks have the same influence on the visitation
probabilities (null hypothesis).

From the empirical data, our analyses on the behavior of ρ(r) suggest that the pref-
erence for recently visited locations can be more than 50 times higher than the visitation
frequency which corroborates with our thesis that visitation preferences are biased in
favor of the recent past trajectory. A further investigation on the ρ(r) value–including
other datasets–has shown that the range of kf < 4 in which the visitation frequency
seems to have a stronger importance than the recency, is due to the visits to the most
visited location. When we analyze the same data after removing the most visited location
(most likely the users’ homes), the influence of the recency becomes even more evident
with ρ(r) > 1 for all values of r.

In this work we explored the fundamental mechanisms of human preferences and
returns. Our results has shown that a recent visit to a location increases dramatically the
probability of returning to it in a near future, supporting the assumption of a preference
for recently visited locations, regardless their frequency-based ranks. The results can be
used to explain not only long-term changes in visitation preferences but also short-term
transient trajectory changes such as temporary relocation and seasonal trends.
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Equilibriated Path Choice
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1Civil and Environmental Engineering, MIT
2Engineering Systems Division, MIT

(Dated: January 30, 2015)

Congestion is an inherent problem in networks on which agents compete for limited resources and
incurred costs are a function of how many people choose to use a supply element. In the context
of mobility on road network, we can elaborate this problem as follows: Any driver with a specific
destination makes a choice about the route they will take, most often depending on their utility
which by definition tries to reflect their preferences, hence utility is inversely proportional to the
travel time of the chosen route. When a driver makes this choice, the total cost incurred to the
whole system is not only the travel time experienced by that driver, but also the marginal cost
that one driver creates on all other users of that road segment. In this work, we begin by mining
billions of mobile phone call records to obtain a typical morning commute and validate our findings
against surveys. Then we make use of the existing literature to implement a framework to solve the
problem of static path selection and how it influences overall congestion. We compare our findings
with previously used, unequilibriated traffic assignment methods.

I. INTRODUCTION

In this work, our goal is to utilize an equilibriated traf-
fic assignment procedure to analyze the effects of individ-
ualistic path choice on congestion. In addition, we aim
to build on the routing framework to further analyze ur-
ban mobility from a sociodemographic perspective to try
and answer questions that relate commuting times, path
choices, and roads used to income, population density
and other similar qualities.

In the US the first works using mobile phone data
for transportation applications refer to traffic monitor-
ing. Departments of Transportation in different states
carry out these studies in collaboration with private data
providers. Less is known about how the massive amount
of information hidden in several months of anonymized
mobile phone bills; also known as call detailed records
(CDRs), can support the models of travel behaviors.
Here we implement a method of using CDRs that can
be used to extract ODs by purpose and time of the day.
The presented results are validated against surveys and
existing ODs available from the local DOT. We show the
robustness of the method comparing the results over two
types of phone data sets and in two cities.

In road networks, travel time is known to be a function
of the flow on that road segment. Though many expres-
sions of this relationship exist, we will use the most com-
mon choice in the literature: The BPR function relating
the observed travel time te on an edge e with capacity
ke, free travel time te0, and xe vehicles traveling on it is,

te(xe) = te0

(
1 + α

(
xe
ke

)β)
. (1)

∗ serdarc@mit.edu

where generally α = 0.15 and β = 4.

With the assumption that the observed cost for all
users is equivalent to the observed travel time, we can
define the total cost incurred by all users in a network
as,

total cost = C =
∑

e∈E
xete(xe) (2)

The flow configuration obtained by trying to minimize
C to decrease the average time an average user will spend
for their trip is referred to as the socially optimal flows.

However, it is known that the actual flow configuration
is far from optimal. As drivers make selfish choices, they
push the system away from optimality. The set of flows
that occur when every driver individually and selfishly
minimizes their own cost is referred to as the user equi-
librium flows. This problem is actually a routing game,
where players are the drivers and their strategy spaces are
available paths between their origin and destination. In
this context, a Nash equilibrium refers to a set of strategy
choices of every user that results in a final outcome where
no user can unilaterally deviate from their strategy to get
a better payoff, which in the context of road networks is
less travel time. These principles have also been sum-
marized under Wardrop’s principles [1] in transportation
literature.

In solving for equilibrium flows, potential functions are
made use of. By definition, a potential game is a game
that can be represented by a potential function that when
optimized yields Nash equilibria of the problem at hand.
A function φe(xe) such that φ

′
e(xe) = te(xe) can be found

by φe(xe) =
∫ xe

0
te(x)dx. One can therefore write a po-

tential function for the user equilibrium problem as fol-
lows:
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2

Φ(f) =
∑

e∈E

∫ xe

0

te(x)dx

=
∑

e∈E
te0xe

(
1 + 0.03

(
xe
ke

)4
) (3)

Minimization of this function results in equilibrium
flows.

A

B

C

D

1 + x
100

2

0.25

2

1 + x
100

FIG. 1. Example network and an analysis of its equilibrium
and optimal flows. For a demand of 100 drivers going from
node A to node D, user equilibrium would allocate the flows
between paths ABD, ACD and ABCD such that the travel
times are equal: 25 people each choose paths ABD and ACD,
and 50 people choose path ABCD; resulting in an average
travel time of 3.75 for all drivers. Optimal flows would min-
imize total travel time, yielding in 50 people each on paths
ABD and ACD, and zero people on path ABCD; resulting
in an average travel time of 3.5 for all drivers. The fact
that edge BC remains unused captures what’s known as the
Braess’ Paradox [2]; when additional capacity does not de-
crease social cost. The price of anarchy under these conditions
is 3.75/3.5 = 1.07.

II. METHODOLOGY

Current methods to solve the traffic assignment prob-
lem vary in their approaches: Typical gradient descent
type algorithms, although fast to solve the problems, do
not help with the generation of the possible paths but
only generate aggregate link flows that path flows create.
On the other hand as network sizes increase, solving ex-
plicitly for paths becomes infeasible very quickly. There-
fore algorithms that can efficiently compute desired equi-
librium path and link flows are preferred. The literature
spans many such algorithms for this purpose, with most
being derivatives of three main sets of methods: Link
based, path based, origin based. Due to it’s advantages
in generating paths, fast convergence and efficiency, we
utilize an origin-based approach in this work. We will
follow Algorithm B, proposed in [3] along with modifica-
tions and improvements outlined in [4], an origin based
algorithm that focuses on the equilibriation of a graph

structure referred to as a bush, a directed acyclic graph
(DAG) emanating from every origin node. These struc-
tures are used with the assumption that in the equilib-
rium flows, no directed cycles should exist. In fact the
computational efficiency of this algorithm stems from this
property, as DAGs can be traversed in linear time.

III. RESULTS

We began by comparing our findings of demand from
the mobile phone data in Fig. 2. Our findings are in good
agreement with the results obtained from traditional sur-
veys. Comparison of the commuting trips for each origin-
destination pair in the morning peak shows strong cor-
relations for both inter-town and intra-town trips, reach-
ing ρ = 0.84 for Rio de Janeiro and ρ = 0.99 in Boston.
Fig. 2 also illustrates spatially the flow distribution of
the model and the CDR ODs for both cities by mapping
color-coded and width adjusted lines between OD pairs
whose flow values exceed 0.10% of the total study area
trips. By visual inspection, it can be said that CDR data
manages to capture the flow distribution of that of the
model ODs, with majority of the flows concentrated to-
wards downtown in Boston and downtown and across the
bay in Rio de Janeiro.

Theoretically, for a user-equilibrium solution, the total
cost obtained by the travel time between an origin and
destination multiplied by the demand for that pair should
be equal to the flow on every link multiplied by the travel
time on that link; as both measure the total travel time.
To assess convergence, we use the following measure:

relative gap = 1 −
∑
o,d traveltimeod ∗ demandod∑
i,j traveltimeij ∗ flowij

(4)

Fig. 3 depicts the convergence of Algorithm B com-
pared to ITA, the incremental assignment approach, as
well as a more reasonable and accurate VoC (volume over
capacity) for Boston. These findings are preliminary,
but do have implications in further usage of user equi-
librium models for assignment procedure. Consequently,
it is possible to carry out further analysis about path se-
lection, and the effects of urban sociodemographics on
congestion.
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4

FIG. 2. The flow distributions in Rio and Boston as a comparison between those obtained from the mobile phone data and
those from the survey. The correlations for the subdistrict level and the town level are depicted in the legend, for Rio and
Boston, respectively.
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Land	  use	  classification	  using	  call	  detail	  records	  
Kaushalya	  Madhawa1,	  Sriganesh	  Lokanathan1,	  Danaja	  Maldeniya1,	  Rohan	  Samarajiva1	  

1LIRNEasia,	  12	  Balcombe	  Place,	  Colombo	  8,	  Sri	  Lanka	  

Colombo	  is	  the	  largest	  city	  in	  Sri	  Lanka	  by	  
population	  and	  economic	  activity.	  With	  the	  
post-‐war	  infrastructure	  boom,	  land	  use	  
patterns	  in	  Colombo	  are	  changing	  quickly,	  
with	  residential	  population	  continuously	  
decreasing	  making	  way	  for	  commercial	  
activities.	  Having	  an	  up-‐to-‐date	  overview	  of	  
land	  use	  characteristics	  is	  critical	  in	  for	  urban	  
planning,	  and	  traditional	  survey	  and	  census-‐
based	  methods	  in	  addition	  to	  being	  
expensive	  cannot	  give	  high-‐frequency	  
insights.	  Mobile	  network	  big	  data	  could	  be	  
utilized	  as	  a	  low-‐cost	  and	  high	  frequency	  
alternative	  for	  understanding	  changes	  in	  land	  
use.	  Our	  method	  potentially	  goes	  further	  
than	  previous	  efforts,	  by	  allowing	  for	  a	  more	  
fine-‐grained	  understanding	  of	  land	  use	  
changes.	  	  

Whenever	  a	  mobile	  phone	  is	  used	  to	  make	  or	  
receive	  a	  call	  or	  SMS,	  or	  to	  access	  the	  Internet,	  
the	  event	  is	  captured	  via	  meta-‐data	  stored	  in	  
the	  operator’s	  logs.	  This	  is	  called	  a	  Call	  Detail	  
Record	  (CDR).	  The	  CDR	  also	  contains	  the	  
location	  of	  the	  Base	  Transceiver	  Station	  (BTS)	  
that	  services	  the	  subscriber,	  as	  well	  as	  
timestamp	  for	  the	  event.	  Using	  these	  records	  
it	  is	  possible	  to	  get	  a	  time-‐series	  of	  activity	  at	  
each	  BTS.	  Building	  on	  prior	  work	  [1,	  2,	  3,	  4],	  
this	  usage	  pattern	  of	  BTS	  activity	  can	  be	  
leveraged	  to	  understand	  the	  characteristics	  of	  
the	  land	  beneath	  it.	  	  

For	  each	  BTS,	  we	  utilize	  a	  month	  of	  CDR	  data	  
to	  construct	  a	  time-‐series	  measure	  of	  the	  
number	  of	  users	  connected	  to	  the	  BTS	  at	  any	  
given	  time.	  We	  then	  project	  this	  data	  into	  a	  7-‐
day	  week,	  excluding	  data	  from	  public	  holidays	  
since	  human	  dynamics	  change	  dramatically	  
during	  holidays.	  For	  each	  BTS	  we	  then	  end	  up	  
with	  a	  time-‐series	  measure	  for	  each	  day	  of	  the	  
week,	  where	  the	  diurnal	  activity	  pattern	  for	  
that	  day	  is	  an	  average	  of	  all	  the	  same	  
weekdays	  in	  that	  month.	  	  

Projecting	  the	  user	  data	  of	  a	  month	  to	  a	  week	  
results	  in	  a	  unique	  ‘signature’	  of	  mobile	  usage	  
at	  each	  site	  as	  seen	  in	  Figure	  1.	  A	  vector	  of	  
168	  elements	  represents	  the	  time-‐series	  

signature	  of	  a	  BTS.	  This	  signature	  provides	  a	  
good	  measure	  of	  the	  variation	  in	  people’s	  
behaviors	  between	  days	  and	  even	  between	  
the	  hours	  of	  each	  day.	  	  

	  
Figure	  1:	  Hourly	  user	  distribution	  for	  a	  week	  fro	  a	  
sample	  BTS	  

The	  actual	  number	  of	  users	  connected	  to	  a	  
BTS	  at	  any	  given	  time	  depends	  on	  the	  area	  it	  
covers	  and	  the	  place	  it	  is	  located	  at.	  To	  
remove	  these	  biases	  we	  normalized	  the	  hourly	  
user	  distribution	  by	  taking	  the	  z-‐score.	  The	  
diurnal	  signature	  of	  each	  BTS	  also	  contains	  
occasional	  noise	  that	  could	  affect	  the	  land	  use	  
classification.	  Using	  methods	  articulated	  in	  [1]	  
to	  deal	  with	  noise	  in	  Wi-‐Fi	  signals,	  we	  remove	  
the	  random	  variations	  in	  our	  normalized	  
diurnal	  data	  by	  decomposing	  the	  covariance	  
matrix	  of	  user	  time	  series	  data	  into	  a	  
combination	  of	  its	  principal	  components.	  	  

Each	  time	  series	  vector	  for	  a	  BTS	  can	  be	  
represented	  by	  a	  linear	  combination	  of	  its	  
principal	  eigenvectors	  as,	  

(1)	   𝑇! = 𝐶!!𝑉! + 𝐶!!𝑉!   +⋯+   𝐶!"𝑉!	  	  	  

Here	  𝑇! 	  represents	  the	  time	  series	  of	  a	  BTS	  i,	  
and	  𝐶!!	  represents	  the	  correlation	  of	  the	  first	  
eigenvector	  𝑉!and	  so	  on.	  

The	  first	  eigenvector	  accounts	  for	  the	  general	  
diurnal	  pattern	  of	  the	  city.	  The	  first	  fifteen	  
eigenvectors	  of	  the	  covariance	  matrix	  is	  
capable	  of	  representing	  95%	  of	  the	  variation	  
in	  the	  time	  series	  data.	  	  

Then	  the	  time	  series	  distributions	  are	  
redistributed	  using	  only	  the	  first	  fifteen	  
eigenvectors.	  
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Land	  use	  classification	  

The	  time	  series	  of	  each	  BTS	  is	  then	  assigned	  to	  
one	  of	  three	  clusters	  using	  a	  k-‐means	  
algorithm	  considering	  each	  reconstructed	  
time	  series	  as	  a	  168-‐dimensional	  vector.	  

We	  use	  the	  signature	  of	  cluster	  centroids	  to	  
infer	  the	  actual	  land	  use	  category	  that	  each	  
cluster	  belongs	  to.	  Whilst	  prior	  work	  [4]	  had	  
identified	  more	  than	  three	  clusters,	  we	  find	  
that	  interpretation	  of	  the	  these	  additional	  
categories	  is	  problematic	  for	  our	  data,	  
especially	  when	  we	  validate	  using	  known	  land	  
use	  characteristics	  in	  Colombo.	  	  

The	  centroid	  pattern	  of	  Cluster-‐3	  is	  consistent	  
with	  the	  dynamics	  of	  a	  commercial	  region,	  
since	  more	  users	  are	  detected	  during	  
weekdays	  than	  weekends	  and	  the	  daily	  peak	  
occurs	  during	  the	  daytime.	  Similarly	  the	  
centroid	  pattern	  of	  Cluster-‐2	  is	  consistent	  with	  
the	  dynamics	  of	  residential	  regions,	  with	  
weekday/	  weekend	  variations	  being	  minimal	  
and	  the	  daily	  peak	  occurring	  during	  the	  late	  
evening	  each	  day.	  Cluster-‐2	  is	  classified	  as	  
belonging	  to	  areas	  of	  mixed-‐use	  land	  
characteristics,	  since	  there	  are	  no	  discernable	  
variations	  in	  the	  time	  of	  the	  daily	  peaks	  or	  
between	  weekdays	  and	  weekends.	  

	  
Figure	  2:	  Distribution	  of	  clusters	  in	  Colombo	  district.	  Cluster-‐3	  (Commercial)	  areas	  are	  in	  red,	  Cluster-‐2	  

(residential)	  areas	  are	  in	  blue,	  and	  Cluster-‐1	  (mixed-‐use)	  areas	  are	  in	  green.	  Areas	  with	  blue	  dots	  signify	  a	  BTS	  
signature	  closer	  to	  Cluster-‐2	  than	  Cluster-‐3.	  Areas	  with	  red	  dots	  signify	  a	  BTS	  signature	  closer	  to	  Cluster-‐3	  than	  

Cluster-‐2	  	  	  	  

The	  spatial	  distribution	  of	  clusters	  is	  shown	  in	  
Figure	  2.	  	  

Cluster-‐1	  also	  exhibits	  the	  least	  average	  
silhouette	  value	  as	  compared	  to	  the	  other	  two	  
clusters.	  We	  then	  calculate	  the	  distance	  from	  
each	  point	  in	  Cluster-‐1	  to	  the	  centroids	  of	  
other	  two	  clusters.	  The	  ratio	  of	  the	  distance	  
from	  the	  centroid	  of	  a	  Cluster-‐1	  area	  to	  the	  
centroids	  Cluster	  2,	  and	  Cluster	  3,	  is	  used	  to	  
understand	  how	  the	  mixed-‐use	  regions	  
compare	  with	  other	  two	  categories.	  	  

An	  analyses	  of	  these	  ratios	  for	  each	  Cluster-‐1	  
area	  (i.e.	  mixed	  use),	  suggests	  that	  mix-‐used	  
regions	  neighboring	  a	  commercial	  area	  exhibit	  

a	  pattern	  more	  similar	  to	  the	  commercial	  
pattern	  than	  a	  residential	  pattern.	  The	  inverse	  
seems	  to	  hold	  true	  for	  mixed-‐use	  areas	  
adjacent	  to	  mainly	  residential	  areas.	  

Future	  Work	  

We	  plan	  to	  use	  this	  technique	  repetitively	  
over	  a	  longer	  time	  period	  to	  investigate	  if	  the	  
classifications	  of	  the	  silhouettes	  (blue	  and	  red	  
dots	  in	  Figure	  2)	  show	  changes.	  This	  might	  
reveal	  a	  high-‐frequency	  measure	  of	  the	  
changes	  in	  land	  use	  than	  is	  possible	  using	  just	  
the	  three-‐cluster	  classification.	  	  	  
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Impact of Indoor-Outdoor Context on Crowdsourcing
based Mobile Coverage Analysis

Mahesh K. Marina*, Valentin Radu*, Konstantinos Balampekos†

*The University of Edinburgh †Nokia Networks

We consider the crowdsourcing based mobile cellular net-
work measurement paradigm that is becoming increasingly pop-
ular. In particular, we aim to study the impact of user in-
door/outdoor environment context at time of measurement. Fo-
cusing on signal strength as the measurement metric and us-
ing a real large crowdsourced measurement dataset for cen-
tral London area along with estimated environment state (in-
door or outdoor), we show that indoor-outdoor context has a
significant impact, suggesting that conflating indoor and out-
door measurements can lead to unreliable results. We validate
these observations using a set of diverse and controlled mea-
surements with indoor/outdoor ground truth information.

Crowdsourcing [1–10] has recently emerged as a new approach
for mobile cellular network measurement and analysis. It exploits
smartphones (with built-in cellular network interface and location
sensing capabilities) as measurement sensors and the natural mo-
bility of people carrying them for cost-effective, continual and fine-
grained spatio-temporal monitoring of mobile networks. The crowd-
sourcing approach has several advantages over existing approaches
like drive testing (e.g., [11]), coverage modelling (e.g., [12]) and
network-side passive analysis (e.g., [13]). It captures reality bet-
ter than the coverage modelling approach; less expensive than the
drive testing approach; and unlike the network-based passive moni-
toring approach, it allows direct measurement at user side including
context. Also measurements with the crowdsourcing approach re-
flect user perceived mobile performance as they are obtained from
real end-user devices. The foregoing discussion suggests that the
crowdsourcing approach will likely be an integral part of a broader
approach to meet the emerging mobile network measurement and
monitoring needs.

However the crowdsourcing approach also presents several chal-
lenges some of which have been discussed in [14]; one of the chal-
lenges mentioned concerns device and environment context and is
the focus of this paper: “.. it is not always clear where the device is
located when the test is made (so it could be indoors or outdoors,
in a bag or in the users hand) ..”. Gember et al. [5] have in fact
partially characterized the impact of some of the relevant contex-
tual factors, especially device position (phone in hand or not), and
show that such factors have a significant impact on measurement
results. For example, moving the phone from hand to pocket can
cause up to 79% difference in measured throughput.

In this paper, we complement the previous work in [5] by show-
ing that whether a mobile user participating in a crowdsourced mea-
surement system is indoor or outdoor at the time of measurement
matters significantly. This is an environment related aspect of user
context that has not received much attention till date. Not surpris-
ingly, existing mobile crowdsourcing systems (e.g., [1, 2]) lack the
indoor-outdoor detection capability.

To study the indoor-outdoor impact, we focus on signal strength
(RSSI) as the measurement metric driven by at least three reasons.
Firstly, coverage or signal strength is not only an intuitive metric
for users but also the primary metric targeted by operators and reg-
ulators; this is clearly stated by the authors of [15] “Without ex-
aggeration, we can say that coverage is the most important and the
highest-priority target that has to be achieved by cellular operators.”
and is also evident from [12, 16]. Secondly, signal strength is re-
cently shown to correlate well with throughput and mobile device
battery energy drain [9, 17, 18]. Finally, unlike other performance
metrics like throughput that may require active measurement, sig-
nal strength can be measured passively with little or no impact of
device battery consumption; for this reason, it is also the most
widely supported metric across all existing crowdsourced mobile
network measurement systems.

In particular, we highlight the downside of conflating indoor and
outdoor measurements. Such conflation of measurements from dif-
ferent environments and contexts is quite likely to happen in prac-
tice because it is typical to aggregate nearby measurements into
coarser geographic units such as grid squares or postcodes. It is
easy to find examples from real-world practice and research liter-
ature where aggregation of measurements over space is done. Of-
com’s mobile coverage analysis [12, 16] aggregates coverage pre-
dictions into postcodes and 200mx200m grid squares. WiScape [3]
partitions the world into zones each around 0.2 sq. km. each. On-
line coverage checkers of web sites of almost all mobile operators
indicate coverage at the postcode level [19].

Our analysis is based on a large crowdsourced measurement dataset,
consisting of nearly 8 million measurements spanning over 3 years,
from OpenSignal [1] for central London. As the indoor-outdoor
context is not embedded in the dataset, we choose to rely on a GPS
based method used previously in [20] to infer whether a measure-
ment was collected while indoors or outdoors.

We show that indoor and outdoor measurements have quite dif-
ferent signal strength characteristics (see Figure 1). As existing
crowdsourced measurement systems do not differentiate between
indoor and outdoor measurements and spatial aggregation of mea-
surements is common, conflation of diverse measurements can thus
lead to erroneous conclusions — coverage outdoors is likely to be
underestimated, whereas indoor coverage may be overestimated.
Imprecision or uncertainty concerning location of a measurement
can compound this problem.

Figure 2 shows a sample result that highlights the risk of con-
flating indoor and outdoor measurements. We have also validated
these observations using a diverse set of controlled measurements
with indoor/outdoor ground truth information.
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Figure 2: Differences in indoor and outdoor average RSSI values for a selection of 25 cell sectors from the OpenSignal dataset.

Figure 1: CDF of indoor and outdoor RSSI values for a specific cell sector
and operator combination (OpenSignal dataset).
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Anomaly detection in mobile phone data —
Exploratory analysis using Self-Organizing Maps
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Abstract—Communications traffic on wireless networks gen-
erates large amounts of metadata on a continuous basis across
the various servers involved in the communication session. The
networks are engineered for high reliability and hence, the data
from these networks is predominantly normal with a small
proportion being anomalous. From an operations perspective
however, it is important to detect these anomalies when they occur
to correct any vulnerabilities in the network. The objective of our
work is anomaly detection in communication networks to improve
network performance and reliability. In this paper we explore
the use of neural network based Kohonen Self Organizing Maps
(SOM) applied to Per Call Measurement Data (PCMD) records
from a 4G network for data analysis and anomaly detection.

I. INTRODUCTION

Communications networks have evolved over the years to
become large, complex and fault tolerant systems. Various
network elements in the system capture and log traffic on
a continuous basis. Given the stable nature of the networks,
much of this data represents normal operations. However,
faults and errors in the network are reflected in data that
shows anomalous behavior of the network. The fault tolerant
mechanisms in the networks correct most errors and the
anomalous data is typically of short duration. However, at
times, these errors may be a precursor to a larger failure in
the system. It is therefore important to detect such anomalies
in a timely fashion to detect vulnerabilities and take corrective
measures as necessary.

Anomaly detection algorithms [1], [2] can be employed
to detect anomalies in the networks. The need for detecting
anomalies in near real time necessitates the application of
anomaly detection on streaming data. But anomaly detection
for data streams remains a challenging task. Sadik et al enu-
merate the research issues in anomaly detection for streaming
data [3], defining streaming data as an infinite sequence of
data points with explicit or implicit timestamps. Since com-
munications network servers are generating data continuously,
anomaly detection on data streams would be relevant in this
context. Our approach is to first explore anomaly detection
algorithms with subsets of our data in batch mode and then
extend the work to streaming data. In this paper we focus on
techniques for anomaly detection when anomalies are transient
and rare. The focus is on unsupervised learning techniques
since some small numbers of errors are expected in the system
— considered normal — and not every error is deemed an
anomaly.

The objective of our work is outlier detection in communi-
cation networks to improve network performance and reliabil-
ity using performance metrics from the network, particularly

the Per Call Measurement Data (PCMD) of an 4G LTE system
which is a very rich source of data. To this end, in this
paper we describe work in progress which includes exploratory
data analysis; clustering and outlier detection based on neural
network based Kohonen Self Organizing Map (SOM) [4].

The rest of this paper is organized as follows. Section
II gives a brief overview of the data that we used in this
analysis. Section III presents the analysis on the data using
SOM. Related work is presented Section IV and conclusions
and future work are in Section V.

II. DATASET AND EXPLORATORY ANALYSIS

PCMD provides call measurement data on a per-procedure
basis for the important procedure interactions that a user
device (UE) has with the mobile network for voice, data
and SMS sessions in a 4G network. Examples of common
procedures triggered by the UE are: requests to register with
the network; service requests that trigger activation of radio
bearers; handovers to handle mobility and requests for release
of a session. Each PCMD record captures key data fields
such as service type, session length, setup latency, signal
quality, data throughput, data related to handovers, the session
result code, additional levels of detail on the result code,
the sequence of intermediate procedure steps also known as
Procedure Markers (PM) required for the session, etc., thereby
providing a view into network performance. A single record is
typically comprised of a large number (hundreds) of populated
fields.

For our exploratory analysis we look at the PCMD records
generated at a single server from a network that experienced
a failure. The time period of the data collection spans a few
minutes and includes: a stable period, the occurrence of the
failure event followed by a gradual recovery period, and back
to a stable state. The dominant procedures (as shown in Figure
1) were Procedure 6 (release), Procedure 10 (paging) and
Procedure 11 (service). Due to lack of space and for illustrative
purposes we will limit our discussion in this paper to Procedure
6.

Our dataset consists of the primary and secondary fields of
PCMD records, about 250 fields in total. Guided by PCMD
domain experts, we chose the following six fields for the
analysis and modeling of anomaly detection :Duration of
Procedure; Connect Code (indicating final success/failure of
the procedure); Qualifier Primary and Qualifier Secondary,
which provide further details on the resultant connect codes;
and the Sequence Index. The selection was based on the
usefulness of the information in the field for determining
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Figure 1: Number of observations by Procedure Type

the cause of the anomalous behavior. In addition, the timing
of the record as the minute relative to the start of the data
collection record was retained. This allows for differentiation
of records between when the network was in a stable state
versus when the network was in a failure or recovery state.
The field Sequence Index deserves some explanation since by
itself it does not occur in a PCMD record, rather it is derived
based on artifacts in the record.

Among other fields, each PCMD record contains up to
20 distinct Procedure Markers (PM) which are represented as
integers corresponding to the codes of intermediate events that
occur during the execution of a procedure. Based on prior field
experience with addressing failures, it is known that certain PM
sequences are likely indicators of anomalous conditions in the
network. Chandola et al. [5] indicates that often anomalies can
be found in repeating patterns (or discrete sequences) whereby
anomalies may be hidden in a pattern of sequences whose
frequency of occurrence is anomalous. Therefore, the PMs in
a record were concatenated to produce a sequence. Each such
unique PM sequence was indexed and a frequency distribution
was produced for each unique PM sequence. Procedure 6 was
found to have about 100 unique sequences though only a very
small number of sequences make up the majority of records.

III. ANALYSIS OF RESULTS

We investigated various clustering algorithms for unsuper-
vised learning. Given the objective of anomaly detection but
still being in the exploratory phase, we chose to work with the
neural network based Kohonen Self Organizing Map (SOM)
[4]. It is particularly suited to discovering input values that
are novel and for the visualization of otherwise difficult to
interpret data. A key characteristic of the SOM is its topology
preserving ability to map a multi-dimensional input into a two
dimensional form.

Figure 2 shows the results of applying the SOM algorithm
(using the R Kohonen package [6]) to our dataset for Procedure
6 using the 6 features described above. The figure shows the
mapping of observations to the 10x15 grid where each node in
the grid is created such that the distance to the neighbor node
is minimized. The graphs in the figure display the heatmaps
for the 6 selected variables. Based on the characteristics of the
data, certain nodes may have no observations mapped to them
— in our case about 30% of the nodes contain no observations.
Given the large number of observations and based on the data

distribution, we chose a grid with enough nodes (10x15) such
that each node is distinct enough and has an optimal number
of observations in it for clustering.

Next, the SOM clustering algorithm was applied to the grid
of nodes. Based on the within-cluster sum of squares (WCSS)
metric for k-means for different clustering sizes, between 8 to
12 clusters showed good results. For the case of 8 clusters,
Figure 3 shows the cluster boundaries on the grid as well
as the average value of each variable by node. The results
are interesting for anomaly detection — there is one large
cluster, as expected, and 7 small clusters of 3 nodes or 1
node each, of which 2 clusters contain no observations. This
gives 5 clusters to analyze and to study the characteristics of
the observations to determine the causes of the anomalous
behavior. The sum of the observations in these 5 clusters
represents less than 1% of the total observations and range
between 19 and 1691 observations (412, 19, 1175, 98, 1059,
1691, 292) per cluster. However, for real-world large-scale
streaming data applications of anomaly detection it is not
practical, nor timely, to visually detect outliers. To address this
issue, future work will investigate techniques for the automatic
extraction of rules from SOMs [7].

Figure 3: Procedure ID 6 with 8 clusters

IV. RELATED WORK

Anomaly detection is a mature area of research. Chandola
et al. [2] provide a comprehensive taxonomy of anomaly de-
tection techniques across varying application domains. PCMD,
a rich data source for network state information has been
used for different objectives such as estimation of subscriber
locations [8], using that information further to improve the
efficiency of paging mechanisms [9] and for load balancing
[10]. Vaidyanathan [11] used PCMD to analyze the effects of
caller traffic movement in response to emergency and non-
emergency events (rugby match).

Our work, by contrast, is focused on understanding the
availability and reliability of the network by detection of
anomalies using unsupervised outlier detection learners [12]
and clustering techniques.
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Figure 2: SOM applied to Procedure 6

V. CONCLUSION AND FUTURE WORK

In this paper we have applied self-organizing maps for
initial exploratory analysis and as a clustering and anomaly
detection tool. One of the advantages of SOM is that it enables
one to visualize a multi-dimensional data in a two dimensional
grid form to understand the data distribution. A clustering
on the SOM nodes enables one to quickly analyze those
nodes which are minority clusters. Anomalous SOM nodes
detected via this technique can then be further investigated
to derive rules on the underlying data. The large volume of
data generate by communications network precludes the store-
and-process paradigm and streaming analytics and anomaly
detection methodologies for data streams need to be applied in
practice. We plan to also exploit the nature of the sequences of
the Procedure Markers in a PCMD record to get more details
into the interworkings in the network to perform root cause
analysis and flag anomalies. These will be the focus of future
work in this area.
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Mobile	  Phone	  Data	  as	  a	  Means	  of	  Studying	  Activity	  Space	  Segregation	  at	  Scale	  
	  
Robert	  Manduca,	  Bradley	  Sturt,	  Marta	  González	  
	  

Few	  topics	  in	  sociology	  are	  as	  well	  studied	  as	  segregation.	  Hundreds	  of	  papers	  over	  the	  past	  several	  
decades	  have	  sought	  to	  determine	  both	  the	  causes	  and	  effects	  of	  the	  pronounced	  segregation	  that	  still	  exists	  today	  
across	  the	  United	  States.	  	  However,	  the	  vast	  majority	  of	  these	  studies	  have	  focused	  on	  residential	  segregation,	  
despite	  the	  fact	  that	  most	  of	  the	  impacts	  of	  segregation	  are	  felt	  through	  the	  environments	  to	  which	  people	  are	  
exposed	  during	  the	  day—their	  “activity	  spaces”	  (Kwan,	  2013).	  	  

In	  this	  paper,	  we	  utilize	  cell	  phone	  call	  detail	  record	  (CDR)	  data	  from	  metropolitan	  Boston	  to	  examine	  
segregation	  in	  daytime	  activity	  spaces.	  We	  articulate	  a	  definition	  of	  activity	  space	  that	  is	  operable	  on	  CDR	  data,	  
then	  measure	  social	  distances	  between	  census	  tracts	  based	  on	  the	  amount	  of	  overlap	  between	  the	  activity	  spaces	  
of	  their	  residents.	  We	  find	  notable	  clusters	  of	  adjacent,	  strongly	  connected	  tracts,	  particularly	  in	  outlying	  parts	  of	  
the	  metropolitan	  area.	  	  

Residential	  segregation	  has	  attracted	  enormous	  amounts	  of	  scholarly	  attention	  over	  the	  past	  fifty	  years	  as	  
both	  an	  outcome	  of	  interest	  and	  a	  cause	  of	  disparities	  in	  life	  outcomes	  (Bruch	  &	  Mare,	  2006;	  Massey	  &	  Denton,	  
1993;	  Sampson,	  2012;	  Schelling,	  1971;	  Wilson,	  2012).	  In	  recent	  years,	  however,	  an	  increasing	  number	  of	  
researchers	  in	  sociology,	  geography,	  and	  public	  health	  have	  noted	  that	  many	  of	  the	  processes	  thought	  to	  be	  
affected	  by	  segregation	  occur	  primarily	  during	  the	  day,	  when	  most	  people	  are	  not	  at	  home.	  These	  researchers	  have	  
begun	  to	  move	  beyond	  simple	  residence	  to	  a	  more	  complete	  conception	  of	  activity	  space	  in	  their	  work	  on	  the	  
impact	  of	  environmental	  factors	  on	  social,	  economic,	  and	  health	  outcomes	  (Crowder	  &	  South,	  2011;	  Inagami,	  
Cohen,	  &	  Finch,	  2007;	  Kwan,	  2012,	  2013;	  Matthews,	  2011).	  Unfortunately,	  thus	  far	  there	  have	  been	  few	  studies	  of	  
segregation	  in	  activity	  spaces	  with	  a	  large	  enough	  sample	  to	  draw	  conclusions	  at	  scales	  smaller	  than	  the	  overall	  
metropolitan	  area.	  Previous	  studies	  in	  activity	  space	  segregation	  have	  used	  data	  from	  travel	  surveys	  (Wang,	  Li,	  &	  
Chai,	  2012;	  Wong	  &	  Shaw,	  2011),	  cell	  phone	  GPS	  traces	  (Palmer,	  2013),	  and	  census	  data	  (Ellis,	  Wright,	  &	  Parks,	  
2004),	  all	  of	  which	  are	  limited	  by	  either	  a	  sample	  of	  not	  more	  than	  a	  few	  thousand	  individuals	  or	  a	  limited	  
definition	  of	  activity	  space	  centered	  only	  on	  home	  and	  work.	  	  

CDR	  data	  offers	  the	  possibility	  of	  collection	  rich	  activity	  space	  information	  for	  samples	  of	  hundreds	  of	  
thousands	  of	  people,	  and	  we	  exploit	  this	  potential	  in	  the	  present	  study.	  We	  begin	  by	  extracting	  mobility	  patterns	  
from	  CDRs	  in	  metropolitan	  Boston	  
over	  two	  months	  in	  spring	  2010	  
in	  the	  manner	  described	  by	  
Alexander	  et	  al.	  (2014).	  For	  each	  
individual	  in	  the	  dataset,	  this	  
method	  provides	  an	  estimated	  
home	  location,	  work	  location,	  and	  
other	  ‘stay	  points’	  from	  which	  
they	  made	  multiple	  calls	  during	  
the	  study	  period.	  We	  define	  an	  
individual’s	  activity	  space	  from	  
their	  set	  of	  stay	  points,	  selecting	  
those	  points	  that	  are	  visited	  more	  
than	  a	  threshold	  number	  of	  times	  
(the	  threshold	  is	  not	  theoretically	  
determined,	  and	  we	  investigate	  
several	  values	  of	  it,	  ranging	  from	  
only	  including	  home	  and	  work	  to	  
including	  the	  full	  set	  of	  stay	  
points).	  These	  activity	  spaces	  
encompass	  substantially	  more	  
than	  individuals’	  tracts	  of	  residence,	  as	  
indicated	  by	  Figure	  1.	  	  

	  	  

Figure	  1:	  Daily	  movement	  patterns	  in	  metropolitan	  Boston	  
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	   With	  activity	  spaces	  calculated	  
for	  each	  individual,	  we	  examine	  the	  
amount	  of	  overlap	  in	  the	  activity	  spaces	  
of	  census	  tracts.	  We	  calculate	  a	  social	  
distance	  metric	  for	  census	  tracts	  based	  
on	  the	  percentage	  of	  their	  residents’	  
activity	  spaces	  that	  overlap	  with	  each	  
other.	  There	  is	  some	  relation	  between	  
this	  social	  distance	  and	  physical	  
distance,	  but	  the	  relationship	  is	  far	  from	  
one-‐to-‐one	  (see	  Figure	  2).	  The	  strongest	  
ties	  are	  found	  between	  tracts	  in	  
outlying	  cities	  such	  as	  Worcester,	  
Lowell,	  and	  Lawrence.	  Within	  central	  
Boston	  the	  ties	  are	  weaker	  and	  physical	  
adjacency	  seems	  to	  be	  less	  correlated	  
with	  activity	  space	  overlap.	  Analysis	  at	  
this	  level	  of	  geographical	  detail	  is	  made	  
feasible	  by	  the	  large	  size	  of	  the	  CDR	  
sample	  and	  has	  not	  be	  possible	  in	  
previous	  work	  on	  activity	  space	  
segregation.	  	  
	   We	  also	  examine	  the	  social	  
characteristics	  of	  connected	  tracts.	  
Tracts	  with	  substantial	  activity	  space	  
overlap	  do	  appear	  to	  have	  greater	  
similarity	  in	  social	  characteristics,	  
although	  the	  relationship	  is	  not	  one	  
to	  one	  (see	  Figure	  3).	  Based	  on	  
activity	  spaces	  we	  calculate	  the	  
expected	  exposure	  to	  
demographically	  dissimilar	  
populations	  for	  residents	  of	  each	  
census	  tract.	  
	   Further	  work	  to	  be	  presented	  
at	  the	  conference	  will	  probe	  more	  
deeply	  the	  relationship	  between	  
physical	  proximity	  and	  activity	  space	  
overlap,	  investigate	  the	  similarity	  of	  
overlapping	  tracts	  on	  a	  number	  of	  
demographic	  characteristics,	  and	  
attempt	  to	  locate	  boundaries	  in	  the	  
Boston	  metropolitan	  area	  that	  define	  
groups	  of	  tracts	  with	  substantial	  
overlap	  from	  one	  another.	  	  Each	  of	  
these	  analyses	  will	  be	  novel	  to	  the	  
activity	  space	  segregation	  literature	  
because	  they	  will	  delve	  beyond	  a	  
simple	  metropolitan	  segregation	  
index	  into	  the	  specific	  geographic	  
patterns	  that	  create	  daytime	  
segregation.	  

Figure	  2:	  Activity	  space	  overlap	  between	  census	  tracts	  (blue	  indicates	  higher	  
levels	  of	  overlap)	  

Figure	  3:	  Tract	  median	  income	  compared	  to	  median	  income	  of	  tracts	  with	  overlapping	  
activity	  spaces	  
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The pervasiveness of cell phones opens new horizons for
understanding and studying human behavior. Mobile phones
are powerful sensors, and they are quickly becoming the main
source for social and behavioral data. In this paper we present
a study aimed at identifying the gender of cell phone users
based on their visited locations then investigate variations of
usage behavior given predicted gender information. The analysis
was carried out using CDRs (Call Detail Records) on 10,000
cell phone users. Our contributions can be summarized in (1)
understanding the communication characteristics pertaining to
gender; and (2) Identifying the difference in mobility habits
between males and females. The results highlight the behavioral
differences between males and females in based on their mobile
phone usage.

I. INTRODUCTION

The rise of smart phones, apps, and mobile Internet makes the
cell phone a key battleground in the fight for customer attention
by the telecom companies. Basic demographic attributes, including
gender, may be registered by the companies, where they may use this
information in user profiling and marketing. However, it is common
that the registered information doesn’t represent the actual users of the
service. Call Detail Records (CDRs) provide a convenient data source
that can be used to infer different attributes about the mobile phone
users [1], [3]–[5], [7], [8]. Saudi Arabia is highly gender segregated
society. Acts of gender segregation manifest in many different forms;
for example, separate educational facilities for men and women only,
female-only shopping malls or shopping malls with access restricted
to families only. Also, many entertainment or leisure facilities are
built specifically for either gender. For example, attending football
matches at various stadiums in the Kingdom is limited to men only.

II. DATA DESCRIPTION

The dataset consists of one full month of records for an entire
country, with 3 billion mobile activities to over 10 thousands unique
cell towers, provided by a single telecom service provider.

In order to study the influence of gender in communication
behavior, we extracted a sample ground truth sample (i.e., labels
of female and male), by exploiting the gender segregation in Saudi
Arabia. Specifically, since the CDRs used in this study has no
gender information for the cell phone users, we have developed a
methodology for gender identification. We were able to identify the
gender of 10,000 cell phone users (5000 female students and 5000
male) students. The first step in the identification process was to
locate Point of Interests (POIs) that restrict access based on gender.
After locating these POIs, we extracted the cell towers situated
around each POI that provide radio coverage over that area. Then,
we distinguished the people in stay versus people in move (i.e., who
is passing by and who was actually there). Finally, we identify the
gender of the users based on the number of distinct gender specific
locations visited.

III. COMMUNICATION PATTERN

In this section we attempt to understand the calling behavior of
females and males using the CDRs. We focused on examining the

5,000 male and 5,000 female students activities during different days
of the week and the month. We denote the normalized activity levels
of females and males as V Female and V Male , respectively.

A. Monthly scale
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Figure 1: Daily Male and Female Activities across the month

Fig 1 depicts the female and male activities across the entire month,
where each point represents the total number of activities in a day.
Interestingly, we observe a drop in the activities for both females
and males during weekends. Female activities during the weekend
shows a larger decrease; this might indicate that women tend to use
cell phones for professional activities or work related tasks. On the
other hand, males might favor social and personal calls. We also
observe a slight increase in the mobile phone activities during the first
and the last day of the weekdays, and it appears more regularly for
females than males. In addition, as the month progresses we observe
a decrease in the cell phone activities. Further investigation shows
that the last two weeks coincided with the final exams period.

B. Daily scale

In order to have a better look at the daily activity, we decompose
the daily mobile phone activities into 288 five minutes interval. This
gives us a better understanding of how the activities change within
the day. Fig 2 shows the average calling activities of females and
males in 5 minutes interval. On the left figure, we observe a peak
in female activities at 6:30 am and 2:30 pm. Our hypothesis is that
since women do not drive in Saudi Arabia, these peaks correspond
to time at which they call the drivers to come and drive them to the
university, or in case of 2:30 pm, drive them back home. To further
investigate this, on the right figure we can see females 5-minute
interval activities during weekends. As expected, these two peaks
disappear on weekends, thus these sharp increases in the activities
during a weekday are females calling their drivers to get them around.
The influence of the daily prayers can be observed in females and
males daily activities. Fig 2 shows significant drops occurring four
times across the day. Previous analysis has showed that the drops
coincide with daily prayer time [2]. An interesting observation is that
women tend to not pray Duhr (12pm) on time during the weekdays;
instead, we observe a slight increase in cell phone activities at this
time. An interpretation for this observation could be that women
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Figure 2: 5 min interval activities of males and females in 24 hours window
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Figure 3: Radius of Gyration (ROG) for Males and Females

postpone this prayer until they get home. However during weekends,
women pray Duhr on time. Also, the mobile phone activities for
females and males during weekends shows that they have similar
calling behavior. During weekends, males tend to be less active in
the first half of the day, and generate more mobile phone activities
during the second half of the day. The opposite pattern is observed
during weekdays. Females show the same pattern in the change of
calling behavior in weekdays versus weekends. We have observed
that in fact, as it may be the cultural belief, women spend more
time on the phone than men. However, females tend to make less
number of phone calls in the second half of the day. We found that
females tend to make fewer, but longer phone calls. We calculated
the Empirical Cumulative Distribution Function (ECDF) of the calls
duration made by females and males. We find that nearly 50% of our
sample of females had calls duration greater than 40,000 seconds
as opposed to their male counterparts where 50% of them had calls
duration greater than 20,000 seconds.

IV. MOBILITY DISCREPANCY

In this section, we attempt to examine the discrepancies of mo-
bility patterns between the female and male population. Namely,
we quantify mobility by measuring the Radius of Gyration ROG
(i.e., a measure of how far from the center of mass the mass is),
as implemented by the CDRs analysis package Bandicoot [3]. The
Radius of Gyration has been used previously in the literature to
quantify individual trajectory tracked from CDRs, and researchers
have shown that it has a strong impact on travel distance distributions
over all users [5], [6]. Figure 3, shows the Kernel Density Estimation

(KDE) of the ROG. Although the difference in the size of the ROG be-
tween the male and female population is subtle (µ(male) = 4.056674
and µ( f emale) = 3.366997), using the two-sample Kolmogorov-
Smirnov (KS) test, we find the difference to be statistically significant
(KS = 0.15, p < 0.001) .

V. CONCLUSION

In this work, we show that in some cases it is possible to infer
the gender of mobile phone users through the analysis of CDRs
coupled with POIs. The main purpose of this work is to investigate
the existence of differences in usage patterns in the CDRs given the
gender of a user. This study suggests that females and males use their
cell phones to communicate in a different manner and shows that
there exists a considerable variation in terms of phone usage given
the gender of a user. We acknowledge that some of the explanations
and conclusions proposed in this work might lack rigorous validations
and this is due to the nature of the CDRs where it lacks sufficient
granularity in space and time. We also lack the ground truth validation
for our proposed method of labeling. However, we believe that our
analysis can describe well the trends and discrepancies of gender
specific communication and can be leveraged for several applications.
Future work will involve the improvement of the statistical analysis
and the investigation of additional factors that influences usage of
mobile phones such as the social structure of females and males
users. In addition, we plan to use such extracted features in training
a classifier that can predict gender using CDRs.
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Abstract 

In this paper we study segregation between several ethnic groups in a European city using anonymized 
mobile phone metadata collected from the major mobile phone operator. In particular we look at social 
segregation (patterns of communication), spatial segregation (patterns of movement) and how these 
relate to each other.  

Over the last decades there has been an increased focus on the lack of social integration of immigrants 
in western societies. A policy tool often considered to mitigate this problem is resettlement programs 
enforcing spatial integration. This policy relies on implicit assumptions regarding the relationship and 
causality between social and spatial segregation. Even though this paper is not able to answer 
questions about the causal links between social and spatial segregation, we present evidence on the 
empirical relationship between these variables for different ethnic groups. We believe that a better 
understanding of the relationship between these variables, and the mechanisms involved, is crucial to 
developing more effective integration policies. 

Increasing the social integration between ethnic groups is often an important objective for policy 
makers. From the call data we obtain a proxy for ethnicity. This allows us to shed new light on social 
integration by providing an in-depth analysis of the communication patterns of different ethnic groups 
in the city. In particular we derive the extent of across-group and within-group communication for the 
different ethnic groups in the city. Using Hofstede’s cultural dimension theory we derive a measure of 
cultural distance between the different ethnicities in the sample and find how much of the social 
integrations and across-group communication can be explained by this measure. 

When studying the relationship between spatial and social integration we make use of a “benchmark 
integration level” inspired by Blumenstock and Fratamico (2013). The benchmark is defined by what 
the structure of the social network would be assuming random pairing of nodes within a geographical 
area. We then compare this benchmark with the structure of the actual social networks. Based on this 
analysis we develop the “spatial-social-integration-matrix” which provides an overall picture of the 
extent to which the different groups are more/less integrated than what random pairing suggests.  

References 

Blumenstock, JE and Fratamico L (2013). Social and Spatial Ethnic Segregation: A Framework for 
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Churn prediction, or the task of identifying customers 

who are likely to discontinue use of a service, is an 

important and lucrative concern of firms in many 

different industries.  As these firms collect an increasing 

amount of large-scale, heterogeneous data on the 

characteristics and behaviors of customers, new 

methods become possible for predicting churn.  In this 

paper, we present a unified analytic framework for 

detecting the early warning signs of churn, and 

assigning a ”Churn Score” to each customer that 

indicates the likelihood that the particular individual 

will churn within a predefined amount of time.  This 

framework employs a brute force approach to feature 

engineering, then winnows the set of relevant attributes 

via feature selection, before feeding the final feature-set 

into a suite of supervised learning algorithms.  Using 

several terabytes of data from a large mobile phone 

network, our method identifies several intuitive - and a 

few surprising - early warning signs of churn, and our 

best model predicts whether a subscriber will churn 

with 89.4% accuracy. 

This paper describes a data driven quantitative and 

computational framework that can be used to find leading 

indicators of churn, and identify individuals with a high 

likelihood of churning.  By using simple machine learning 

algorithms to mine historical transaction records, this 

method discovers behavioral patterns that are empirically 

correlated with the propensity to churn.  This is in contrast 

to the more traditional approach taken by many companies, 

where churn strategies are determined by the intuition of 

key individuals, or through direct feedback from customers. 

The framework has two primary components.  The first is 

designed to identify early warning signs of churn by 

isolating specific and easily-measured behavioral patterns 

that are highly correlated with churn.  One such pattern we 

find, which is indeed highly correlated with churn, is the 

total amount of observed activity of a customer.  It should 

come as no surprise that customers with low levels of 

activity are more likely to churn than customers with high 

levels of activity.  However, this particular metric is one 

among thousands of other metrics that are correlated with 

churn, and the aim of the framework is to zero in on the 

most predictive metrics.  The method we develop is a semi-

supervised, brute force approach to feature engineering, in 

which our algorithm first constructs tens of thousands of 

features through combinatoric feature generation, then uses 

established techniques for feature selection to prune the 

long list down to the most predictive behavioral traits. 

We test and calibrate this framework on a large dataset 

from a mobile phone operator in South Asia.  Starting with 

a raw dataset of several billion transactions, spanning 

roughly ten million prepaid mobile phone subscribers over a 

period of multiple years, we extract a calibration dataset 

consisting of all network-based communication for roughly 

100,000 subscribers over 6 months.  On this dataset, where 

the natural churn rate during our evaluation period is 

roughly 24 percent, our method is able to predict customer 

churn with just under 90 percent accuracy. 

Understanding why customers terminate relationships has 

been a focus of marketing research for several decades (cf., 

Jain & Singh, 2002). In recent years, as data on customer 

activities and characteristics becomes increasingly available 

to companies, more sophisticated metrics have evolved to 

describe customer behavior (cf., Gupta & Zeithaml, 2006). 

Churn prediction has received recent attention from the 

applied machine learning community. These approaches 

have tested a battery of models including expert systems 

(Wei, Chiu, & others, 2002), support vector machines 

(Archaux, Martin, & Khenchaf, 2004), and bagging and 

boosting (Lemmens & Croux, 2006), to name just a few. 

They further vary in terms of the approach to the data, with 

some focusing on customer profiles and features (Qian, 

Jiang, & Tsui, 2006), and others concerned primarily with 

the importance of social ties and social structure (Dasgupta 

et al., 2008; Bonchi, Castillo, Gionis, & Jaimes, 2011; 

Karnstedt, Rowe, Chan, Alani, & Hayes, 2011). Zhang, 

Zhu, Xu, and Wan (2012) provide a recent overview of the 

different types of subscriber attributes used to model and 

predict customer churn in prior work, and Verbeke, 

Dejaeger, Martens, Hur, and Baesens (2012) benchmark 

several classification techniques for prediction. Neslin, 

Gupta, Kamakura, Lu, and Mason (2006) discuss the 

importance of different methods for predicting churn in the 

context of a public tournament between 33 different 

competitors. In these and related studies, the behavioral 

traits are pre-computed most of the times (cf., Neslin et al. 

2006). By contrast, we focus on the process of generating 

these predictor variables from the raw transactional records. 

Furthermore, majority of studies of churn in 

telecommunications focus on the post-paid network while 

our method deals with the pre-paid users. 

Behavioral Modeling for Churn Prediction: 

Early Indicators and Accurate Predictors of Custom Defection and Loyalty 
 

Muhammad Raza Khan1, Joshua Manoj1, Anikate Singh1, Joshua Blumenstock1  

1Information School, University of Washington, Seattle, WA, USA 
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Figure 1 Overview of Approach 

Figure 1 shows the overview of our approach. We begin by 

randomly selecting a subsample of roughly 100,000 

subscribers from the full mobile phone subscriber base, and 

extract all transactions in which they are involved. For this 

subset of subscribers, we then generate a large number of 

aggregated metrics that describe a wide range of inferred 

behavioral characteristics (Feature Engineering). With this 

matrix, we then separately isolate the handful of metrics that 

are most predictive of churn (Feature Selection), and 

develop a Churn Score that indicates the likelihood that a 

subscriber will churn (Machine Learning) 

After generating an extensive list of behavioral features 

using combinatoric approach we employ standard methods 

of feature selection that determine which features are most 

correlated with customer churn. In addition to using 

statistical significance tests to evaluate the individual 

predictive performance of each feature we also use a tree-

based method for feature selection that allows us to estimate 

the conditional ability of each additional feature to improve 

the overall accuracy of a joint classifier (Geurts, Ernst, & 

Wehenkel, 2006; Hastie et al., 2009). 

We quantify churn in two ways: first, as a binary 

condition that is true if the subscriber is completely inactive 

in the testing phase. In total, 26 % of our subscribers fit this 

stringent definition of churn. Second, we define a more 

flexible version of churn as the percentage of days on which 

no activity is observed. The list of top predictive features 

used in our final predictive model is shown in Table 1. 

Unsurprisingly, we find that "Percent of inactive days" – a 

feature indicating the fraction of days during the training 

period when the subscriber had zero transactions – is highly 

predictive of future churn. The next highest ranked feature 

is perhaps less obvious: we find that high variance in call 

activity (measured as the maximum month-to-month change 

in the ratio of incoming to outgoing calls), is strongly 

predictive of churn. 

While the set of features listed in Table 1 are all 

unconditionally highly correlated with churn, these features 

are also correlated with one another. Thus, while the 

"Percent of inactive days" feature may be the best single 

linear discriminant between churners and non-churners, it is 

not necessarily the case that the ensemble of 10 features in 

Panel A will be the best joint predictor of churn. Thus, in 

Panel B of Table 1, we provide the 10 features that are, 

taken together, the best joint predictors of subscriber churn. 

For comparison with Panel A, we also list the R2 from the 

unconditional (univariate) regression for each of the 

features, though it is important to note that this is the 

unconditional R2 and is different from the criteria used to 

rank-order features in Panel B. Two patterns can be seen in 

Table 1. First, the unconditionally predictive features (Panel 

A) generally reflect aggregate metrics of activity. However, 

the conditionally predictive features (Panel B) tend to be 

micro-aggregates which may elude even the sharpest 

marketing director. 

 
Table 1 Top Predictors of Churn 

For evaluating predictive performance of our machine 

learning models we use “Percent of inactive days” as a 

baseline feature, and build a linear discriminant model 

based on that feature. We find that using the empirically 

found threshold of 76% for inactive days our prediction is 

correct in 83.9% percent of cases.  

Depending on the algorithm used to predict churn, we 

achieve accuracy rates of roughly 88.5-89.5 percent. This 

represents a modest improvement of roughly 6 percent over 

the single-feature baseline, or approximately 14 percent 

over the majority-class baseline. A variety of performance 

characteristics of each model, as well as the linear 

discriminant baseline, are given in Table 2. 

 

 
Table 2 Churn Prediction Performance 

While these initial empirical results are promising, we see 

the primary contribution of this paper being the description 

of a systematic framework that can be used to generate 

interpretable features and predict customer outcomes. 

Several of the modelling assumptions we have made, such 

as the axes and dimensions used to generate features, are 

quite arbitrary and it is likely that more careful design of 

these behavioral metrics could yield more intuitive 

predictors and more accurate predictions. 

2015

120

C
o

n
fe

re
n

ce

S
e

ss
io

n
 4

 ::
 S

o
ci

e
tie

s 
(I)

S
e

ss
io

n
 3

 ::
 E

co
n

o
m

ie
s

S
e

ss
io

n
 2

 ::
 C

iti
e

s 
(I)

S
e

ss
io

n
 1

 ::
 M

o
b

ili
ty

S
e

ss
io

n
 5

 ::
 S

o
ci

e
tie

s 
(II

)

S
e

ss
io

n
 6

 ::
 C

iti
e

s 
(II

)

S
e

ss
io

n
 7

 ::
 C

ro
w

d
s

P
o

st
e

r 
S

e
ss

io
n

 1
 ::

 A
p

ril
 8

P
o

st
e

r 
S

e
ss

io
n

 2
 ::

 A
p

ril
 9



 3 

REFERENCES 

Archaux, C., Martin, A., & Khenchaf, A. (2004). An SVM 

based churn detector in prepaid mobile telephony. In 

Information and communication technologies: From 

theory to applications, 2004. Proceedings. 2004 

international conference on (pp. 459–460). IEEE. 

Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp? 

arnumber=13070 

Bonchi, F., Castillo, C., Gionis, A., & Jaimes, A. (2011). 

Social network analysis and mining for business 

applications. ACM Transactions on Intelligent Systems 

and Technology (TIST), 2(3), 22. Retrieved from http://dl 

.acm.org/citation.cfm?id=1961194 

Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., 

Mukherjea, S., Nanavati, A. A., & Joshi, A. (2008). 

Social ties and their relevance to churn in mobile telecom 

networks. In Proceedings of the 11th international 

conference on extending database technology: Advances 

in database technology (pp.668–677). ACM. Retrieved 

from http://dl.acm.org/citation.cfm?id=1353424 

Dwyer, F. R. (1997, September). Customer lifetime 

valuation to support marketing decision making. J. Direct 

Mark., 11(4), 6–13. 

Geurts, P., Ernst, D., & Wehenkel, L. (2006, April). 

Extremely randomized trees. Mach. Learn., 63(1), 3–42. 

Retrieved from http://dx.doi.org/10.1007/s10994-006-

6226-1 

Gupta, S., & Zeithaml, V. (2006, November). Customer 

metrics and their impact on financial performance. 

Marketing Science, 25(6), 718–739. Retrieved 2014-09-

05, from http://pubsonline.informs.org/doi/abs/10.1287/ 

mksc.1060.0221 

Hart, C., Heskett, J., & Sasser, W. E., Jr. (1990, July). The 

profitable art of service recovery. Harvard Business 

Review. Retrieved from http://hbr.org/1990/07/the-

profitable-art-of-service-recovery/ar/1 

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., 

Friedman, J., & Tibshirani, R. (2009). The elements of 

statistical learning (Vol. 2) (No.1). Springer. Retrieved 

from http://link.springer.com/content/pdf/10.1007/978-0-

387-84858-7.pdf 

Jain, D., & Singh, S. S. (2002, March). Customer lifetime 

value research in marketing: A review and future 

directions. J. Interactive Mark., 16(2), 34–46. Retrieved 

from http://onlinelibrary.wiley.com/doi/10.1002/dir.1003 

2/abstract 

Karnstedt, M., Rowe, M., Chan, J., Alani, H., & Hayes, C. 

(2011). The effect of user features on churn in social 

networks. In Proceedings of the 3rd international web 

science conference (p. 23). ACM. Retrieved from 

http://dl.acm.org/citation.cfm?id=2527051 

Lemmens, A., & Croux, C. (2006, May). Bagging and 

boosting classification trees to predict churn. Journal of 

Marketing Research, 43(2), 276–286. Retrieved from 

http://journals.ama.org/doi/abs/10.1509/jmkr.43.2.276 

Neslin, S. A., Gupta, S., Kamakura, W., Lu, J., & Mason, C. 

H. (2006). Defection detection: Measuring and 

understanding the predictive accuracy of customer churn 

models. Journal of marketing research, 43(2), 204–211. 

Retrieved from http://journals.ama.org/doi/abs/10.1509/j 

mkr.43.2.204 

Qian, Z., Jiang, W., & Tsui, K.-L. (2006). Churn detection 

via customer profile modelling. International Journal of 

Production Research, 44(14), 2913–2933. Retrieved from 

http://www.tandfonline.com/doi/abs/10.1080/002075406

00632240 

Verbeke, W., Dejaeger, K., Martens, D., Hur, J., & 

Baesens, B. (2012). New insights into churn prediction in 

the telecommunication sector: A profit driven data mining 

approach. European Journal of Operational Research, 

218(1), 211–229. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S037722

1711008599 

Wei, C.-P., Chiu, I., & others. (2002). Turning 

telecommunications call details to churn prediction: a 

data mining approach. Expert systems with applications, 

23(2), 103–112. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S095747

402000301 

Zhang, X., Zhu, J., Xu, S., & Wan, Y. (2012). Predicting 

customer churn through interpersonal influence. 

Knowledge-Based Systems, 28, 97–104. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S095070

5111002693 
 
 

 

2015

121

C
o

n
fe

re
n

ce

S
e

ss
io

n
 4

 ::
 S

o
ci

e
tie

s 
(I)

S
e

ss
io

n
 3

 ::
 E

co
n

o
m

ie
s

S
e

ss
io

n
 2

 ::
 C

iti
e

s 
(I)

S
e

ss
io

n
 1

 ::
 M

o
b

ili
ty

S
e

ss
io

n
 5

 ::
 S

o
ci

e
tie

s 
(II

)

S
e

ss
io

n
 6

 ::
 C

iti
e

s 
(II

)

S
e

ss
io

n
 7

 ::
 C

ro
w

d
s

P
o

st
e

r 
S

e
ss

io
n

 1
 ::

 A
p

ril
 8

P
o

st
e

r 
S

e
ss

io
n

 2
 ::

 A
p

ril
 9



Places and Mobility: the Influence of Attractions on People
Movement
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Extensive theoretical work attempts to address the pre-
dictability of human mobility in cities by means of under-
standing the periodicity of people movement as well as incor-
porating social networks features to improve the predictions.
Using mobile phone data coupled with city structure data of
the city of Riyadh in Saudi Arabia, we examine the potentials
of better predicting the mobility of users using data pertaining
to attraction areas within a city. We find that people movement
around a city is highly correlated with the distribution of
places around the city depending on the time of the day. We
found a correlation factor of 0.86 between the number of POIs
and the number of phone calls per location in the city. We
further explored the correlation of different POIs to different
times of the day to better understand the correlations during
regular business hours versus night times.

I. INTRODUCTION

With the rapid adoption of pervasive technologies, a significant
portion of the worlds population utilizes mobile phones, emails and
social media (e.g., Twitter, Facebook...etc) forming a platform for
people to exchange information, broadcast thoughts and convey
feelings. Researchers today are using data generated from such
technologies to better understand human behavior at unprece-
dented scales. Such data driven research unveiled statistical
patterns that provide understanding of how people communicate,
feel, move and so forth. Extensive research investigated the
periodicity of human mobility and showed that humans can be
highly predictable [3], [5]. Such understanding of the predictability
helped significantly improve predicating social links within the
social networks [4], [6]. Additionally, researchers were able to
improve the prediction of human mobility through social networks
features and investigated whether certain trips are motivated by
social influences [1], [2]. In this paper, we present preliminary
insights of the relationship of human mobility to the number of
places around the city and the possibility of using such data to
improve mobility predictions. Exiting research have used POI data
as a proxy to the structure of cities in order to better understand
how different areas within a city attract people [7].

II. DATASET

The data set used is mobile phone billing information, also
known as Call Detail Records (CDRs), the dataset holds calling
information including caller and receiver identifiers as well as the
locations where the call was made. First, the dataset was filtered
for users within the bounds of the city of Riyadh in Saudi Arabia.
After the initial filtration process, the data set withholds around
3 million unique users and around 32 million unique social ties.
(Peeking into the structure of the social network, figure (a) shows a
subset of the social network in Riyadh. In this social network, there
are around 23 thousands nodes and 93 thousands edges.) Along
with the CDRs, we are using data pertaining to places of interests
(POIs) in the city of Riyadh. We have around 12 thousands POIs
in the city of Riyadh; each POI entry contains its location and its
type (i.e. restaurant, store, bank...etc), where there are 96 types
to tag POIs.
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Figure 1: The number of phone records versus the number of POIs

III. SPATIAL DECOMPOSITION OF POIS VERSUS PHONE ACTIVITY

In order to quantify the relationships of the number of POIs and
the level of activity across the whole day, we split the city into
squared cells of equal areas. Then, we correlate the aggregation
of phone calling activity to the aggregation of number of POIs in
each cell. Figure 1 shows the plot of the number of corresponding
quantities for each cell where we have a correlation factor of 0.86
indicating very high correlation between the places people visit
and the number of POIs in a place. Spatially visualizing the heat
map of the POIs in the city of Riyadh versus the phone activity,
figure 2 shows mobile phone activity on the left versus density
of POIs on the right. The high correlation between cellular activity
and the POIs of the city of Riyadh are visually evident; we can see
that both heat maps overlap indicating similar spatial distribution.
This hints out the possibility of using such correlating quantities in
predicting human mobility around the city.

A. Time of Day Influence on Correlations

Although the spatial distribution of activity correlates highly with
the number of POIs in a given cell, the correlation coefficient
shows varying values depending on the time of the day. In order to
gain insights, we filter phone calling activity during the day versus
the activity during the night. Table I shows correlation coefficients
between night and day activity versus the number of POIs on each
cell. The table suggests that during the day people tend to be
located around areas where the density of POIs is high having a
correlation factor is 0.825. The Table also suggests that during the
night people tend to be located in places that have POIs as well
but with a 0.487 correlation coefficient.
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Figure 2: Mobile activity (left) and POI density (right) decomposed spatially in Riyadh where the they have a spatial correlation of 0.86

POI Count Day Activity Night Activity
POI Count 1 0.825 0.487
Day Activity 0.825 1 0.733
Night Activity 0.487 0.733 1

Table I: Correlation matrix of POIs versus mobile activity

B. Most Attractive POI Types

In order to better investigate whether certain locations are more
preferred than others, we correlate the night and day activity to
the POIs given their types. That way we can examine if certain
POIs are more preferred to be visited during the day versus the
night. Table II shows the types of POIs that correlates the most
with phone activity during night and day. We can see that places
with shopping malls correlate the most across both day and night
times, but they seem more attractive during the day. We can also
see that the most attractive POIs overlap greatly.

Day Activity Night Activity
shopping mall (0.895) shopping mall (0.772)

finance (0.89) bank (0.753)
bank (0.86) museum (0.749)

establishment (0.857) finance (0.725)

Table II: POI types correlation rank versus mobile activity

IV. FUTURE DIRECTIONS TOWARDS BETTER PREDICTING

MOBILITY

Table II shows that there isn’t much of a variation in the prefer-
ence of certain types of POIs across day and night. Therefore, we
aim to investigate the preferences of POIs by spatially correlating
the POIs to the home and work locations of the users. In order
to quantify the home and work locations, we assume a number of
latent states (locations) we are going to predict. We aim to predict
two major states: home and work. We assume that the spatial
distribution of people around home and work are 2 time-invariant
Gaussian distribution [1]. The distributions are centered around
the home/work locations respectively. Also, we assume that user’s
phone activity times follows normal distribution. Figure 3 shows the
traces of a user modeled as a two-components Gaussian mixture
model, where each represents the underlying hidden state. The
user’s visits are classified either as home or work based on the
time of the user’s phone activity according to the temporal normal
distribution. Then, based on the predicted state, the geographic
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Figure 3: Gaussian mixture model for inferring home/work traces

location can be predicted from the location distribution. In addition
to investigating the correlations of home/work locations with POIs,
this prediction technique will help us identify visits that don’t belong
to one’s home or work locations. 10% to 30% of such outlier traces
can be explained by incorporating the social network information
[1]. We intend to explore the possibility of explaining more about
the outlier traces through incorporating POIs. Potential research
direction includes incorporate an existing Periodicity Mobility Model
(PMM) that can capture home and work for each user.
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Classification of Human Population in Hospitals 

Using Mobile Phone Data 
	   	   	   	   Guanning	  Dong	   	   	   	   	   	   	   Xianfeng	  Song	   	   	   	   	   Xinhai	  Liu	  
dongguanning@tuoming.com	   	   	   xfsong@ucas.ac.cn	   	   	   xinhai.liu@foxmail.com	  
	  

INTRODUCTION 
As the most important destinations of cities, hospitals usually have irrational arrangement. For 
example, the patients may crowd into the top three hospitals, increasing the burden of medical 
workers, in the meantime, resulting in a waste of medical resources of other hospitals. When 
anyone is in hospital, communication with family and friends becomes an essential element. The 
generated mobile phone data offer us a chance to study the behavior pattern of human population 
in different level hospitals, which will help to improve the existing medical facilities and service 
and adjust the quantity and capacity of hospitals according the real-time demand of patients. 
 
Some important conclusions have been reached about human pattern based on mobile phone 
data[1]. Mobile phone trajectories represent a reasonable proxy for individual mobility and can 
provide useful insights into intra-urban mobility patterns[2]. Experimental studies have explored 
the relationship between human behavior and mobile phone datasets, and identify the home-work 
location[3]. In this paper, focusing on further application of the mobile phone data, we propose an 
analytical process aimed at classifying human population in hospitals. 
	  

METHODS 
We first hypothesize that human population in hospitals are mainly composed of healthcare 
workers and patients. Both of them have characteristic behavior model, thus mobile phone traces. 
Specifically, healthcare workers follow a relatively obvious home-hospital model. The patients, 
who divide into outpatients and inpatients, have different patterns. Inpatients may also 
communicate in hospital in working hours and at home in off-working hours, but the situation will 
not last long. The datasets of outpatients can be generated in hospital at any time of a day. The 
pattern is shown in Figure 1.   

 

	   	   	   	   	  
          

(a) Inpatients                  (b) Outpatients                   (c) Healthcare workers 

 

Figure 1: Spatial distribution of human population in hospitals  
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Table 1: Feature of human population in hospitals 

 

 

Table 2: Classification of human population in hospitals 

 
We then classify the healthcare workers and patients using the Support Vector Machines (SVM). 
For modeling, three groups of training samples were used in concert with four different kernel 
functions. Table 2 is the preliminary classification results of The General Hospital of People’s 
Liberation Army (known as 301 hospital) on 15th December, 2014. 
 
Moreover, we obtain the spatial distribution of healthcare workers and patients by cluster the 
mobile phone datasets, as is presented in figure 1(301 hospital). After that, we analyze the original 
destination matrix to understand the distance human spend on the way to hospital. Finally, based 
on aided-data, we research the correlation between the quantity of patients and indicator factors, 
such as age and gender. 
 
RESULTS 
The experimental finding importantly evaluates the potential feasibility of using the large scale of 
mobile phone data to research on the healthcare allocation. The contribution is that we classified 
the human in hospital into groups, including the healthcare workers, outpatient and inpatient. This 
is based on the temporal and spatial feature among them. Furthermore, the systematic study on 
patients’ medical tendencies indicates that the patients of different level hospitals have certain 
distinct features. Afterwards, further analysis and applications will be explored to provide 
evidence and advice for healthcare facility and resource reallocation and management, aiming to 
improve the service level and efficiency of healthcare system in Beijing and other main cities of 
China. 
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 Healthcare workers Inpatients Outpatients 

Working time In hospital In hospital In hospital 

Off-working time At home In hospital At home 

 Healthcare workers Inpatients Outpatients 

Population 173 2126 1053 
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Campaign Optimization through Mobility Network Analysis

Yaniv Altshuler1, Erez Shmueli2, Guy Zyskind3, Oder Lederman3, Nuria Oliver4, Sandy Pentland3

1Athena Wisdom, Israel
2Department of Industrial Engineering, Tel-Aviv University, Israel

3MIT Media Lab, USA
4Telefónica Research, Spain

In a world of limited resources, behavior change campaigns (e.g.
marketing, service provision, political or homeland security) can
rely on creativity and attractiveness up to a certain point. The
success of a campaign can generally be defined as the product of
reach (portion of the population exposed to the campaign mes-
sages) and value of a single interaction (the capacity of a message
to induce a certain behavior in an exposed audience) [1]. Hence,
campaign managers typically distribute their budget between con-
tent enhancement (to increase the value a single interaction) and
wide reach. Yet, to date it seems that the optim trade-off between
these two factors is found as a result of “intuition” rather than based
on well established analysis.

In this work, we propose a novel mathematical method that,
given the characteristics of the target audience and its ability to
be persuaded, generates an optimized campaign strategy in terms
of: (a) the quantity of interacting units, also referred to as inser-
tions and (b) the monetary allocation to each unit. The model takes
into account the population’s mobility in an urban environment as
it can be inferred from real data received from a large mobile phone
carrier. Even though different populations located in different envi-
ronments would be tailored with different campaign strategies, the
optimality of each strategy would be maintained.

A major contribution in our optimization model is the use of net-
work analysis methods to approximate the reach of a campaign.
More specifically, given the network of mobility between the dif-
ferent geographic locations, and a subset of locations, we use the
Group Betweenness Centrality (GBC) [2] – a network measure that
calculates the percentage of shortest paths among all pairs of net-
work nodes that pass through a pre-defined sub-set of the network’s
nodes – to approximate the reach of this subset of locations. We
then demonstrate that this function can be approximated using a
smooth and easily analyzed Gompertz function. This tackles the
main limitation of works on campaign optimization hitherto – effi-
ciently estimating the campaign reach as a function of the number
of units and their locations.

We have validated our results by using two comprehensive real-
world geo-spatial datasets. The first dataset included a large num-
ber of mobile phone records, from which we have produced a mo-
bility pattern model which was in turn analyzed in order to derive
an optimized campaign for the region in question. The second
dataset comprised of a large number of taxi rides in the city of New
York. While analyzing these dataset we have first shown a way to
analytically calculate the exact optimal cost for units in a certain
campaign, of generic nature. We then demonstrated how the opti-
mal number of such units can be produced, that would guarantee a
maximal utilization of a campaign’s budget.

Finally, we have discussed several campaign scenarios, involv-
ing various utilization schemes, demonstrating the usability of the

techniques presented in this chapter for real world use.

Figure 1: GBC Deployment fort the two mobility datasets: (a)
CDR (left) and (b) taxi rides (right). The appropriate Gompertz fit
of the curves is also included.

Figure 2: The optimal number of units, as a function of the ratio
between the cost of a unit and the cost of the best unit available in
the two mobility datasets. For example, in the CDR dataset (left),
when a single unit costs 1% of the maximal campaign impact, the
optimal number of campaign units would be 25, whereas if cheaper
units are used (such as units that cost merely 1

2
% of the maximal

campaign impact) the optimal number of units would be 28. Sim-
ilarly, in the taxi rides dataset (right), when a single unit costs 1%
of the maximal campaign impact, the optimal number of campaign
units would be 350, whereas if cheaper units are used (such as units
that cost merely 1

2
% of the maximal campaign impact) the optimal

number of units would be 380.
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